

Enhancing an HTM System with Monitoring, Visualization and Analysis Capabilities

Philipp Kirchhofer¹, Martin Schindewolf¹, Nehir Sonmez², Oriol Arcas², Osman S. Unsal², Adrián Cristal², Wolfgang Karl¹

¹Karlsruhe Institute of Technology (KIT) ²Barcelona Supercomputing Center (BSC)

Chair for Computer Architecture and Parallel Processing, Institute of Computer Engineering, Karlsruhe Institute of Technology

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Transactional Memory simplifies parallel programming

But how to achieve good performance and scalability?

Need for a monitoring infrastructure to

- identify runtime characteristics of an application running on an HTM system
- detect application bottlenecks
- get insight into interaction between application and HTM system

Project Goals

Develop a monitoring infrastructure for the TMbox HTM system using event logs:

- Generate events at run time and save for later processing
- Recreate HTM state offline
- Visualize and analyse saved information

Additional goals:

No probe effect, small hardware overhead, high extensibility, ease of use

Design The TMbox system

- Developed at Barcelona Supercomputing Center
- MIPS compatible multi-core system (FPGA based, 16 cores on 1 FPGA)

Supports

- STM (TinySTM)
- HTM (BeeTM)
- HybridTM (Modified TinySTM)

Design

The TMbox system - Block Diagram

Design Post Processing, Visualization, Analysis

Host PC		
Post Processing	Visualization	Analysis

Hard drive

Design Post Processing, Visualization, Analysis

Design Post Processing, Visualization, Analysis

Kirchhofer et. al. - Enhancing an HTM System with Monitoring, Visualization and Analysis Capabilities 8 10.04.2012

Results

Paraver workflow

Results

Example: 4 conflicting threads

Results

Example: 4 conflicting threads

Summary

- Application / HTM runtime behavior is trackable with no probe effects
- Visualization capabilities lead to in-depth understanding of application / HTM runtime behavior
- Metrics provided via offline analysis, e.g.
 - Time spent in Committed & Aborted Transactions
 - Contention / Commit & Abort Rate
 - Contention between specific threads
 - HTM System Overhead

Summary at a glance

The TMbox system now supports:

- Identification of detailed runtime characteristics of an application
- Easy detection of application bottlenecks
- Getting hints to optimize application concerning both performance and scalability

Ongoing work

Combine monitoring with STM runtime environment: Allows analysis of HybridTM systems

See further work in full paper "A low-overhead profiling and visualization framework for Hybrid Transactional Memory" (to appear in FCCM 2012)

Acknowledgment

This work was supported by a Short Term Scientific Mission (STSM) grant from the European Cooperation in Science and Technology (COST) Action IC1001 (EuroTM) during June and July 2011.

Enhancing an HTM System with Monitoring, Visualization and Analysis Capabilities

Philipp Kirchhofer¹, Martin Schindewolf¹, Nehir Sonmez², Oriol Arcas², Osman S. Unsal², Adrián Cristal², Wolfgang Karl¹

¹Karlsruhe Institute of Technology (KIT) ²Barcelona Supercomputing Center (BSC)

Chair for Computer Architecture and Parallel Processing, Institute of Computer Engineering, Karlsruhe Institute of Technology

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Additional slides

Workflow

Event Diagram

Event diagram

FPGA Usage

TMbox FPGA Usage (with monitoring infrastructure) - Increase per Core

