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KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu
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Abstract

Bis vor einigen Jahren wurden Geschwindigkeitssteigerungen bei x86 Prozessoren haupt-
sächlich durch die Erhöhung der Taktfrequenz und, in einem geringeren Maße, durch
Optimierungen der Mikroarchitektur erreicht. Der steigende Stromverbrauch und immer
kleiner werdende Fortschritte beim Übergang auf neue Prozessorarchitekturen führten
dazu, dass dieser Prozess nicht mehr fortgesetzt werden kann. Aktuelle Desktop- und
Server-Prozessoren verwenden deshalb typischerweise Mehrkernarchitekturen. Erwartet
wird durch dieses neue Vorgehen ein 30-facher Geschwindigkeitszuwachs in den nächsten
10 Jahren.

Die Verteilung der Arbeitslast einer Anwendung auf parallel rechnende Bereiche ist es-
sentiell für die volle Ausnutzung von Mehrkernarchitekturen. Traditionelle Verfahren zur
Programmierung von mehrfädigen Anwendungen mit Hilfe von Locks sind schwierig zu
erlernen und deshalb eine große Quelle für Programmierfehler bezüglich Performance und
Fehlerfreiheit. Ein neues Programmier-Konzept sollte deshalb vom Programmierer einfach
zu nutzen sein, gut skalieren und eine hohe Rechengeschwindigkeit liefern können. Trans-
actional Memory (TM) ist ein solches Konzept, mit dem die gewünschten Eigenschaften
erfüllt werden können.

TM ist ein neuartiges Konzept, mit dem die Programmierung von mehrfädigen Anwendun-
gen auf Mehrprozessorsystemen vereinfacht wird. Neuere Forschung hat gezeigt, dass der
Einsatz von TM im Vergleich zu bisherigen Programmiermodellen für Mehrprozessorsys-
teme einfacher umzusetzen ist und deshalb zu einer verringerten Programmierfehlerrate
bei den so erstellten Anwendungen führt.

Für eine breite Anwendbarkeit von TM ist es wichtig, dass eine hohe Rechengeschwindig-
keit und gute Skalierbarkeit erreicht wird. Auf aktuellen Hardware basierten TM Systemen
(HTM) kann die Unkenntnis der Interaktion zwischen Anwendung und TM Laufzeitumge-
bung zu Anwendungen mit sub-optimaler Geschwindigkeit und Skalierbarkeit führen. Die
vorliegende Studienarbeit setzt an diesem Punkt an und erweitert ein bestehendes HTM
System (TMbox) um eine Monitoringinfrastruktur, die die für die Analyse von HTM
Anwendungen nötigen Daten erhebt und für eine spätere Verarbeitung speichert. Krite-
rien für den Entwurf dieser Monitoringinfrastruktur werden erläutert und Messergebnisse
diskutiert.

Über diese Aufgabenstellung hinausgehend wurde die Monitoringinfrastruktur um weitere
Komponenten erweitert, mit denen die durch die Monitoringinfrastruktur erhobenen Daten
weiterverarbeitet und für eine Visualisierung und Analyse des Anwendungsverhaltens
genutzt werden. Damit wird in dieser Arbeit gezeigt, wie man durch den Einsatz dieses neu
entworfenen Überwachungs-, Visualisierungs- und Analysesystems das Laufzeitverhalten
einer gegebenen HTM Anwendung visualisieren, analysieren und einer Optimierung
zugänglich machen kann.
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1 Introduction

1.1 Motivation

Transactional Memory (TM) is supposed to simplify parallel programming. Recent re-
search shows that current state-of-the-art TM implementations are on a good way to
achieve this goal. Previous work [1] shows that programming with TM semantics exhibits
a much smaller error rate compared to programming with traditional fine-grained explicit
locking.

But another issue remains: Performance and scalability are both important for a successful
adoption of TM. The 90/10 law, originating from software engineering, states that about
90% of application runtime is spent in 10% of code. It is, according to this law, important
to identify the parts of code where the bottlenecks are, to allow the creation of scalable
and fast applications.

A study at Universität Karlsruhe [2] confirmed that TM applications have the potential to
run faster than lock-based applications. But the study also showed that performance tuning
of TM applications is currently a difficult task. The programmer, who uses current Hard-
ware Transactional Memory (HTM) systems, is often unaware of an application’s behavior.
This makes optimizing the application a trial-and-error process. As a consequence the TM
applications do not run as efficiently as possible. A solution is to generate event logs with
software. This method captures and preserves the dependencies between transactions that
occur during run time. This approach typically comes with runtime overhead and may
influence the application runtime characteristics.

To get a suitable overview of HTM behavior it is vital to have a monitoring infrastructure
with no impact on application runtime characteristics and application behavior. The opti-
mization hints gathered could otherwise be influenced in some way and cause a misguided
optimization attempt. For HTM systems a separate hardware monitor is therefore the
method of choice to non-intrusively gather and preserve run time information.

The purpose of this study thesis is to address these shortcomings and develop a monitoring
and visualization infrastructure for an existing HTM system. This allows the programmer to
get insights into the interaction between application and HTM system, to detect bottlenecks
in the program flow and to optimize the application for the underlying HTM system. The
key design aspects of the monitoring infrastructure include multi-core-scalability, high
extensibility, zero runtime overhead and therefore no influence on application runtime
characteristics. The system should also be easily usable by an application developer.
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1 Introduction

1.2 Outline

This study thesis is structured as follows: Chapter 2 contains a short introduction to
Transactional Memory (TM) and shows related work on TM, profiling and monitoring.
The novel ideas of this study thesis are also explained. The following chapter 3 contains
both an overview and an in-depth walkthrough of all parts of the designed monitoring
infrastructure. The chapter also explains the design decisions made. Chapter 4 does focus
on the implementation of the infrastructure. Chapter 5 shows the results originating from
this study thesis. The thesis ends with Chapter 6 by summarizing possible future extensions
of the project and potential applications to other fields of computer science. The appendix
contains a glossary and the bibliography of referenced papers and web sites.
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2 Transactional Memory and
Related Work

2.1 An introduction to TM

Until some years ago, the performance increase of mainstream x86 processors was mainly
achieved by increasing the processor frequency and, by a lesser degree, with micro-
architecture optimizations. Increasing power consumption and declining performance
advances between processor architecture steps made this approach infeasible to continue.
Current desktop processors have, for this reason, adopted a multi-core type architecture.
Ongoing industry expectations currently reach a 30 times performance increase in the
next 10 years using this approach (for more information see ”The Future of Microproces-
sors”[3]).

Parallel programming is essential to obtain the full performance of multi-core architec-
tures. But traditional parallel programming using locks is hard and error-prone, as shown
in ”Is transactional programming actually easier?” by Rossbach et al. [1] and ”Does
transactional memory keep its promises?” by Pankratius et al. [2]. A programming
paradigm should be easy to use for programmers, have a good scalability and deliver
high performance. Transactional Memory [4] is a new paradigm trying to fulfill these
promises.

Transactional Memory introduces the concept of atomic blocks. These blocks guarantee
atomicity, isolation and consistency. Changes on shared data are done at the end of an
atomic block in an all-or-nothing fashion through implicit commit or abort operations
(atomicity). Each atomic block “sees” a consistent set of shared data (consistency) and is
not allowed to modify the data of another concurrently running atomic block (isolation).

The execution speed of TM applications can be increased by adding support for TM
semantics and instructions directly to the processor ISA. The resulting system is called
a Hardware Transactional Memory (HTM) system. This type of TM system is usually
bound by some sort of capacity contraints, e.g. the hardware can handle a specific fixed
read-/write-set size. A transaction’s read set contains all data locations read during the
transaction, where as a transactions’s write set contains all data locations written during the
transacation. Transactions with a larger read-/write-set size than supported by hardware
cannot run in HTM mode and must be handled by other means (for instance execution in
software mode).

3



2 Transactional Memory and Related Work

2.2 Related work

The speed of TM applications can be increased through STM or HTM hardware support.
There are generally two feasible approaches: A light-weight approach adds special in-
structions to the processor ISA for a more efficient execution of STM systems. These
instructions mostly deal with the locking of certain already existing memory areas in the
processor core. A more intrusive approach adds new execution units and memory dedicated
to TM support to the processor core and therefore uses more hardware ressources. The
main advantage of this approach is to allow the fast execution of some TM transactions
directly in hardware (HTM mode).

Several proposals have been published for TM support in next-generation processor archi-
tectures. AMD proposes the Advanced Synchronization Facility (ASF) [5], an AMD64
hardware extension for lock-free data structures and TM. Cache lines can be locked using
specific instructions to facilitate the running of a fast ASF-STM system. An evaluation [6]
observed that ASF-based TMs show very good scalability and much better performance
than pure STM for the applications in the STAMP [7] benchmark suite. Intel’s Hardware
assisted Software Transactional Memory (HASTM) [8] also takes the same approach by
proposing changes in the processor ISA to speed up the execution of STM runtime systems.
This light-weight approach allows for a relatively non intrusive implementation in current
processor cores, but also limits the accelerating opportunities. The TM implementation in
Sun’s Rock processor [9] takes on a hybrid approach by implementing the parts, which
allow to accelerate the common case behavior of TM applications, in hardware while
supporting advanced TM features in software. The design of this TM implementation
allows to take advantage of future processor architecture generations, where a successively
higher level of HTM support can be achieved. The TMbox system [10], used as the
underlying platform in this study thesis, follows a different, more heavy-weight approach.
Entire transactions can be executed directly in hardware on a best-effort base. This means
that certain restrictions of transactional characteristics (like size of read-/write-set, no I/O
operations) have to be satisfied to guarantee a successful execution. The advantages are
fast execution and, on the software side, decreased complexity because a STM runtime is
not needed.

None of these proposed changes are currently used in commercially available processors.
The ongoing research on TM by nearly all major microprocessor companys does however
indicate a certain interest and a possibility of an implementation in future, currently
unannounced, CPU architectures.

An increasingly interesting new runtime environment for computation-intensive appli-
cations are state-of-the-art graphic processing units (GPUs) through the use of General
Purpose Computation on Graphics Processing Unit (GPGPU) techniques. These GPUs use
SIMD and massively multi-threaded execution to provide a high raw computing power.
Recent non-graphic oriented programming APIs like OpenCL, DirectCompute and CUDA
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2.2 Related work

allow an adaption of applications to the special requirements of GPUs. But the conversion
of applications using shared data to the specific features and requirements of an GPU
is difficult: Barrier synchronization does slow down the system a lot, while the use of
fine-grained locks is very difficult to get right with more than 10,000 scheduled hardware
threads. Fung et al. [11] address these issues by proposing and simulating a GPU with
HTM support. They show that HTM on GPUs performs well for applications with low
contention. Their proposed TM design ”KILO TM” captures 59 % of the performance
of an GPGPU programmed with fine-grained lockings and has an estimated hardware
overhead of about 0.5 %. Cederman et al. [12] show a related feasibility study: They
use the unmodified hardware of a Nvidia GPU to run two variants of a STM runtime
environment. One variant is a simple, easy to implement STM with lower resource require-
ments, specifically designed for use in GPUs while the other STM variant uses a more
complex design oriented at general purpose multiprocessors. The results show increased
performance and reduced abort rates when using the complex design. The cooperation of
CPU and GPU oriented TM runtime environments remains an developing area: Future
GPU architectures are going to acquire some high-level semantics from standard CPU
architectures like virtual memory support and memory protection.

All of these previously mentioned proposals show different environments for running HTM
and STM applications. To get a high computing performance it is furthermore essential to
characterize TM application behavior and adjust the internal parameters and algorithms
of a TM runtime environment accordingly. Multiple papers have been published about
the characterization of STM applications. Ansari et al. [13] ported some applications
from the STAMP benchmark suite to DSTM2, a Java-based STM implementation with
profiling features. They used some well-known metrics like speed up, wasted work
and time in transaction to characterize the behavior of these applications. Some of the
presented metrics are also implemented in this study thesis, as shown in chapter 5, but
the implementation of a software profiling framework in Java is quite different than the
hardware-based implementation done in this study thesis. Chung et al. [14] present a
comprehensive characterization study of the common case behavior of 35 multi-threaded
applications. The applications mostly originate from computational sciences and use a
wide range of programming languages. Tracing markers were added to the applications
and a trace with all executed instructions and tracing markers was collected for each
application. The results show an interesting insight into the common case behavior of real
world applications not directly designed for TM. The STM monitoring techniques and the
metrics presented in these papers are, in general, transferable to other TM variants, but
the specific implementation of a monitoring infrastructure is different on HTM systems.
One specific different aspect is, for instance, the difference in processing speed of a TM
application running on a system with enabled or disabled monitoring. The processing
speed of TM applications running on a STM runtime environment with enabled monitoring
support is always slowed down due to the increased amount of computations done by
the TM system (e.g. generation and saving of traces). Monitoring support on an HTM
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2 Transactional Memory and Related Work

system can, on the other hand, be implemented with zero overhead, as shown in this study
thesis.

The PhD thesis of Ferad Zyulkyarov [15] does include an extensive introduction to var-
ious Transactional Memory runtime design patterns, functionalities and optimization
opportunities. Topics also include debugging, profiling and optimization techniques. The
profiling framework is based on the Bartok-STM system, an ahead-of-time C# compiler
with TM support. The aim of the developed techniques were to combine profiling work
with the already existing C# garbage collector. The garbage collector runs at dynamic
and non-deterministic time points during the application runtime. Application threads
must be synchronized at these points. This behavior, inherent to managed programming
languages with a garbage collector, changes the applications transactional behavior and
characteristics when compared to an implementation in an unmanaged language with
static memory management. The dynamic behavior also makes accurate monitoring and
optimization harder. The TM tracing techniques in the PhD thesis are therefore integrated
into the garbage collector to allow a parallel execution of memory management and tracing
algorithms and to prevent further transactional behavior changes. This helps to reduce
the probe effect (i.e. the change of application behavior when enabling or disabling the
generation of traces). As a contrast, the work done in this study thesis is based on the
TMbox system, which uses a C based HTM system (BeeTM) with a thin layer directly
above the hardware. The TM runtime on this system does not include a garbage collector
and is therefore not susceptible to the previously mentioned probe effect.

The TMbox system is, in general, comparable to previously published research. The
programing model of the TMbox system [10] is comparable to the Transactional Coherence
and Consistency model [16] and the monitoring techniques used in this study thesis are in
some parts comparable to the Transactional Application Profiling Environment [17]. Both
were developed at Stanford university. Major differences include the use of multiple ring
buses in the TMbox system, while other systems use a switched bus network with different
timing characteristics and influence on HTM behavior. The TAPE system was simulated
using an execution-driven simulator, where as the TMbox system can both be simulated by
software and run in hardware (with a much higher speed) using a FPGA chip.

A related work in nearby fields is the description of an event-based distributed monitoring
system for soft- and hardware malfunction detection in manycore architectures [18]. Up to
4 MIPS32 processors and associated units form a cluster. The proposed design is composed
of several of these clusters, where each cluster is connected via a global interconnect to the
other cluster units. Several monitoring tasks run on each cluster unit: The correct operation
of the units inside the cluster is monitored as well as the operation of the monitoring tasks
on neighboured clusters. The monitoring tasks communicate by sending event messages to
each other. Any deviation from normal operation mode causes a broadcast of a special alert
event to all nearby clusters. The whole system then saves application progress, restarts in a
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2.3 Novel ideas

safe way and continues the interrupted computation with the remaining functional cluster
units.

2.3 Novel ideas

The following novel ideas distinguish the work done here from previous research:

The framework developed in this study thesis allows an in-depth visualization and analysis
of HTM applications. The extensibility also allows to add STM tracing support for
HybridTM behavior analysis. A comprehensive profiling environment for HybridTM
systems has not been published, up to now.

The visualization and analysis capabilities of the existing scalable tool Paraver have been
leveraged for the purposes of HTM and HybridTM behavior analysis. This novel feature
allows an easy interactive in-depth visualization and analysis of HTM behavior.

Using FPGA technology for the implementation of the monitoring infrastructure allows
for fast execution, monitoring and analysis of long and complex TM applications. A
simulation-only approach is usually several magnitudes slower. The use of FPGAs has
another positive effect as it allows the rapid adaption of the monitoring infrastructure to
new requirements and hardware design changes because of short development turn-around
cycles.

7





3 Design

An event-based logging system was designed, tested and implemented during this study
thesis for the TMbox HTM subsystem. This chapter starts with an introduction of the
TMbox system, whose HTM unit was used as the underlying TM implementation. The
modification of TMbox, design decisions and the designed units are also explained in later
sections.

3.1 The TMbox system

The TMbox system [10], designed at the Barcelona Supercomputing Center (BSC), was
used as the base implementation of an HTM system for this project. It uses two ring-buses
to connect the soft-core processors. The ring-bus is especially suited to connect one or
more monitoring elements. Moreover, the TMbox makes use of FPGAs and thus offers the
space and the flexibility to add and synthesize new hardware components. TMbox runs
on the BEE3 [19] multi-FPGA research platform equipped with Xilinx Virtex 5 Series
FPGAs. The TMbox system allows up to 16 MIPS-compatible computation cores to be
fitted in one FPGA chip. A picture of the BEE3 platform can be seen in Figure 3.1.

Figure 3.1: BEE3 platform
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3 Design

TMbox schematics

Figure 3.2: 8 Core TMbox system block diagram

Several components (log unit, event generation, bus controller) of the TMbox system were
modified or added during the implementation phase of this study thesis. Figure 3.2 shows
the modified hard- and software components of the TMbox system in yellow color and the
added components additionally with dashed lines. The black ring bus transfers memory
read/write requests and responses while the red ring bus transfers invalidation and event
messages. Additional information about the TMbox system can be found in ”TMbox: A
Flexible and Reconfigurable 16-Core Hybrid Transactional Memory System” [10].

10



3.1 The TMbox system

The following paragraphs describe the units which were re-used from the TMbox system.
The new units are described in section 3.4.

Bus Node

The bus node unit connects the processor core, L1 unit, TM unit and log unit to two
ring buses. One ring bus transmits memory related messages, whereas the other ring bus
transmits invalidations and (added in this study thesis) events created by the monitoring
infrastructure.

TM Unit

The TM unit is necessary for HTM application support. It contains the read- and write-set
of the currently running transaction. Some TM related parameters like read-/write-set size
can be changed before synthesizing the system.

Bus Controller Unit

The bus controller unit forwards memory related messages received via the ring bus to the
DDR controller for further processing. It also receives requested memory data from the
DDR controller and sends it via the ring bus to the requesting core unit.

Core Unit

The processor core and associated units comprise a core unit. Every neighbouring core
units is connected by the two ring busses. The first and the last core unit is connected to
the bus controller unit. The number of core units in the TMbox system is variable.

11



3 Design

3.2 Profiling workflow

Figure 3.3: Profiling workflow

A simplified representation of the profiling workflow is given in Figure 3.3. First, an
event stream is generated by either simulating the system with Xilinx ISIM / Mentor
Graphics ModelSim or by synthesizing and running it on the BEE3 platform. The event
stream is saved in a file and then fed into the post-processing tool BusEventConverter for
further processing. This tool was created during this study thesis. It creates a file, which
is finally used to visualize and analyze events, states and conflicts with the Paraver tool.
The components of the profiling workflow are described in the next sections, for further
information about BusEventConverter see section 3.5.1, about Paraver see section 3.5.2.

12



3.3 A rationale for event-based monitoring

3.3 A rationale for event-based monitoring

HTM and application behavior can be split into a stream of small events containing
information about state changes. The events are later recomposed during post-processing
using the BusEventConverter tool. This design allows to run the monitoring infrastructure
with low transfer bandwidth needs. Data concerning events is transported as low-priority
traffic: The data is sent on the ring bus only during bus idle phases and therefore does not
influence the application behavior and its runtime characteristics. An alternative would be
to collect and send the complete HTM state each time it changes, causing a large amount
of data to be transferred, consuming more bandwidth than the chosen approach.

Event format

Figure 3.4: Event diagram

Figure 3.4 shows the format of an event. The division into two parts, message header and
message data, is given by the fixed format of the secondary (invalidation) ring bus. The
special message type 3 distinguishes event messages from already defined invalidation
messages of the TMbox system.

The timestamp, i.e. the time when an event occurred, is delta-encoded. This means
only the difference between consecutive event timestamps is saved. This space efficient
encoding allows an accuracy of 1 cycle and a temporal space of about 1 Mio. cycles
between two events occurring on one processor. The TMbox system has a FPGA clock
frequency of 50 MHz. To prevent a timestamp overflow an event must therefore be sent
every 20 milliseconds. A timestamp overflow would otherwise cause the “real” time
(during application runtime) and the reconstructed time after post-processing to diverge. A
timestamp overflow is however an unusual case: Events are created during normal system
operation with reasonable HTM activity with a much higher frequency than required by
this technical limitation. A solution to rule out timestamp overflows would be to add the

13



3 Design

generation of a special no-operation event, whenever the 20 milliseconds without event
generation time limit would be reached.

The data field stores additional data concerning a given event, for instance the cause of
an abort of a transaction. Aborts can be caused either by a software request (software
induced), by reaching a hardware constraint (capacity abort) or in most cases by getting a
matching invalidation message from another processor.

Event types

The event types defined for transactions are:

• Start

• Commit

• Abort

• Invalidation

• Try locking ring bus for commit

• Succeeded locking ring bus

The generation and capturing of these events allows to rebuild the HTM state during post-
processing. Additionally subsets of events can be selected later during analysis, allowing a
focus on specific types of transactions (for example only committed transactions). Currently
up to 16 different event types can be defined, allowing an easy addition of new event types
in future projects.

14



3.3 A rationale for event-based monitoring

Generated event stream

The generated event stream can be easily transferred and saved. Figure 3.5 shows a short
example of an event stream.

Figure 3.5: Monitoring infrastructure event stream

Every row shows one specific event. The value 3 in column “INV” indicates a stream of
events. The “ADDR” column contains encoded values of the four columns to the right.
The “ID” columns contains the number of the processor core which generated the event.
The “DATA” column contains additional information about the event. The last column
“TIMESTAMP” contains the delta-encoded event time (i.e. the difference between the time
during the generation of an event and the time of the previously generated event on the
same processor core).
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3.4 Monitoring units

The following paragraphs describe the design of the hardware units created or modified
during this study thesis. The units are written in VHDL and Verilog.

3.4.1 Event Generation Unit

The event generation unit monitors the HTM unit state, generating events whenever the
state changes. The generated events cover all state changes possible during runtime. They
are augmented with additional data that is useful later on for behavior analysis. This
additional data includes for instance the CPU ID, which caused an TM abort.

The processor core contains a finite state machine (FSM) handling internal processor state
transitions. The event generation unit is embedded into this FSM. A pseudocode sample of
the modified FSM is later shown in Figure 4.2.

3.4.2 Log Unit

Figure 3.6: The log fifo event capturing and saving unit

The log unit captures and saves events sent by the event generation unit located in the
processor core. These events are timestamped and saved using delta encoding in memory
blocks located in each core unit. The events are later transferred via the secondary ring bus
(invalidation bus) to the bus controller. The transfer is only done whenever the ring bus is
idle, to prevent a disturbance of application timing behavior. Therefore a buffer is used to
buffer events. The buffer size can be set during synthesis using VHDL generics.

Experiments did show that a buffer size of 32 entries is large enough to prevent a buffer
overflow and a following loss of events during application runtime. A specially designed
assembler program, which produces a very high rate of generated events, has been used for
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3.4 Monitoring units

this purpose. The chart 3.7 shows the maximum number of used buffer entries over time
for the assembler program running on an 8 core system. The highest peak is at four used
entries and the average use is between one and two entries. This shows that a buffer size
of 32 entries gives enough headroom to prevent a loss of monitoring events even during
application phases with a high frequency of generated events.
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Figure 3.7: Peak used buffer entries

Location of Log Unit

The location of the log unit influences the scope of the available logging data and the
complexity of the necessary design changes. Three possible locations for the unit have
been identified:

1. Tightly integrated into processor core

The internal processor state can be easily monitored by embedding the log unit
directly in the processor core. The biggest disadvantage is the necessity to make
major design changes in the processor core to connect the various processor core
busses and signals to the log unit.

2. Located in the DDR RAM controller

This approach allows to log memory access patterns. Access to other TM related
data is, on the other hand, difficult without breaking up the modularization of the
TMbox system. It is also challenging to distinguish between operations done on
different processors.
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3. Meet in the middle: Between bus node and cache unit

This method allows a great extensibility of the log unit with a broad amount of
available loggable data. It is also relatively easy to non-intrusively connect the log
unit to the rest of the system.

The third location has been chosen for implementation. It delivers a broad amount of
logging data, while keeping the complexity of necessary changes to the TMbox system at
a reasonable level.

3.4.3 Bus Controller Unit

The bus controller unit gathers all events and transfers them over a PCI Express channel to
a host PC. The PCI Express channel has a fixed bandwidth, set during synthesis. In the
case of events flowing in at a higher rate than they can be transferred to the PC a FIFO
buffer is used to prevent a loss of events.
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3.5 Post-Processing

3.5 Post-Processing

After the supervised application has finished running, the post processing tool BusEvent-
Converter reads and checks the event stream, rebuilds HTM and application states, gen-
erates statistics and outputs data suitable for later processing with an visualization and
analysis tool, explained in the next section.

3.5.1 The BusEventConverter tool

Figure 3.8: Monitoring infrastructure post processing

The event stream, which is generated by the monitoring units of the monitoring infras-
tructure, is not directly usable for visualization and analysis. The post processing tool
BusEventConverter generates data usable for visualization and analysis. Multiple passes
process the input data set step by step. The passes are also called ”generators”, because
a new set of data is emitted in each pass. Each generator uses the input data set and
the data generated by previous generator passes, modifies it and generates a new data
set for the next generator. This design principle is also called a workflow pipeline. The
BusEventConverter workflow pipeline is shown in Figure 3.9. The passes developed during
this study thesis, which are shown in the workflow pipeline picture, are explained in the
following sections.
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The workflow pipeline approach allows a flexible development of the BusEventConverter
program functionality: New passes can be easily fitted between existing passes. Already
existing passes can be replaced with passes with extended and/or different functionality.
Future projects can, for example, work on adding passes for automatic phase detection.

Figure 3.9: BusEventConverter workflow pipeline

The BusEventConverter tool is written in Java 1.6 and runs on Windows, Linux and MacOS.
Figure 3.10 shows the classes of the BusEventConverter tool. Classes associated with error
and file handling have been omitted for the sake of brevity.

(a) (b)

Figure 3.10: Classes of post processing tool BusEventConverter
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Input modules

The input module of BusEventConverter can be exchanged to accomodate for multiple
input formats. Currently two input modules are available: The first module, which reads
data output by simulation and the second module, which reads data output by running the
TMbox system on the BEE3 platform. The resulting data of a simulation with Xilinx ISIM
/ Mentor Graphics ModelSim is saved as textual data, whereas the FPGA module generates
binary data.

Generators

Each generator uses a specific finite state machine (FSM) to process the data created by
the input module or a previous generator.

The TransactionStateGenerator reads the events from an input module and generates basic
transaction states. Each transaction is classified as either committed or aborted.

The StateGenerator augments these basic transaction states with several sub-states. For
instance, a committed transaction with an non-empty write-set is divided into three sub-
states:

1. Computation Phase: The program does transactional reads and writes and pro-
cesses data to get results

2. Try Lock Phase: The transaction is validated and prepared for commit by trying to
get a commit lock

3. Commit Lock Phase: The commit lock is acquired and transactional data is moved
to memory

The successful completion of the last phase concludes a committed transaction.

The InvalidationGenerator generates invalidations between processor cores. An invalidation
is the cause for an abort of a transaction. Data includes the processor core ID of the
processor that sent the invalidation and the processor core ID of the processor, on which
the aborted transaction was running.

Output module

Two output modules currently exist: The first module checks consistency and outputs
statistics like event count, number of event types, number of states, etc. This module
is used mainly for debugging purposes. The second module outputs data suitable for
visualization and analysis with the Paraver tool, which is explained in the next section. A
sample output of a BusEventConverter run is given in Listing 3.1.
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Using Simulation Reader
Generating Events: ......................... Done
Generating TX States: 1 2 3 4
Writing output:
- Header
- Events
- States
- Invalidations
Processed 2550 events, 736 TXStates, 1812 states
Filtered 58 events

Listing 3.1: Sample output of a BusEventConverter run

Paraver file

The generated file is now ready for visualization and analysis. A schematic example of
such a Paraver file is given in Figure 3.11.

Figure 3.11: Paraver file

The file contains several Paraver records: The first segment of the file contains the Paraver
event definitions, while the second segment contains the state definitions and the third
segment (not shown) contains the communication definitions. Each definition is associated
with a processor core number and contains a timestamp. The different types are explained
with more details in the next section.
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Paraver file format

The Paraver file format has been figured out by looking through the Paraver source code
available at the BSC website [20]. A specification of the Paraver file format is shown for
further reference in Listing 3.2. This specification should only be used with a grain of salt,
as an official specification could not be found.

Paraver trace files contain a header and a set of records [20]. There are three different
record types:

• State: Record containing a state value of a thread and its duration. Paraver associates
no semantics to the encoding of the state field.

• Event: This record represents a punctual event that occurs during the execution of a
specific thread. It is encoded into type and value. Paraver associates no semantics to
the encoding of these fields.

• Communication: Record containing a pair of events and a causal relationship
between them.

-- Header --

#Paraver (<DD/MM/YYYY at HH:MM>):<lasttime>_<units>:< C

hard_architecture>:1:<soft_architecture>(x,x,x),< C

communicators>

-- State --

1:<cpu>:<ptask>:<task>:<thread>:<begin>:<end>:<state>

-- Event --

2:<cpu>:<ptask>:<task>:<thread>:<timestamp>:<event_type C

>:<event_value>

-- Communication --

3:<send_cpu>:<send_ptask>:<send_task>:<send_thread>:< C

logical_send>:<physical_send>:<recv_cpu>:<recv_ptask C

>:<recv_task>:<recv_thread>:<logical_recv>:< C

physical_recv>:<size>:<tag>

Listing 3.2: Paraver File Format
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3.5.2 The Paraver visualization and analysis program

Paraver [20] is a visualization and analysis program, developed at the Barcelona Supercom-
puting Center (BSC). It is normally used to analyze MPI and OpenMP programs running
on multi-processor and cluster systems. An example of such a cluster is “MareNostrum” 1,
one of the most powerful supercomputers in Europe, located at the BSC.

Paraver structure and features

The Paraver visualization and analysis workflow is shown in Figure 3.12.

Figure 3.12: Paraver workflow (Figure derived from Paraver website)

The filter module selects a partial set of records from the trace file. This is useful for the
visualization and analysis of a part of the states and events, for instance to analyse only
aborted transactions.

The semantic module afterwards assigns a numeric value to each state and event. This can
later be used to compute a system-level overview (see also Figure 5.4c).

The visualization, textual and analysis modules comprise the main parts of Paraver. The
use of this parts is shown in the next chapter.

1http://www.bsc.es/plantillaA.php?cat id=200
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Handling of large traces

The monitoring of long running applications, which run on many-core systems, creates
particularly large traces. Paraver is designed to handle these traces efficiently. The user
can freely zoom in and out of traces, displaying only interesting parts of the visualization
of a trace. A demonstration of this feature is given in Figure 3.13. The white box marks
the zoomed area, e.g. the white box in (a) is fully shown in (b) and the white box in (b)
is fully shown in (c). It is possible to show multiple visualization types simultaneously.
These visualizations can be synchronized to show the same timespan (as seen in Figures
5.4 and 5.5).

(a)

(b)

(c)

Figure 3.13: Increasing zoom levels of an program trace
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All new designed units have been created from scratch and tested individually using unit
tests and test workbenches. Whenever a unit worked right it was integrated into the TMbox
system. After an unit was integrated the whole system was tested for proper operation
using special test programs. This process was repeated until every changed unit had been
tested and integrated. The approach lead to a steady progress during the implementation
phase.

Adding the infrastructure to the TMbox system increased FPGA chip usage by a few
percent. Please refer to table 4.1 and the corresponding Figure 4.1 for a detailed comparison
of a TMbox system with and without the monitoring infrastructure.

The complete system scales linearly when increasing the number of processor cores. When
looking closer it can also be seen that increasing the number of processor cores does
actually decrease the amount of used FPGA units per core.

FPGA Cores

unit type 1 2 4 8 16

Registers1 2,537 4,671 8,953 17,527 34,697
Registers2 2,627 4,822 9,227 18,046 35,705
Increase 3.55 % 3.23 % 3.06 % 2.96 % 2.91 %

LUTs1 6,215 11,973 23,027 45,887 82,871
LUTs2 6,340 12,027 23,411 45,683 82,923
Increase 2.01 % 0.45 % 1.67 % -0.44 % 0.06 %

BRAMs1 7 12 24 45 89
BRAMs2 8 13 25 49 97
Increase 14.29 % 8.33 % 4.17 % 8.89 % 8.99 %

1 without monitoring infrastructure
2 with monitoring infrastructure

Table 4.1: FPGA usage of TMbox system
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An unexpected result can be seen when comparing the LUTs used for an 8 core system:
Adding the monitoring infrastructure to the system actually decreased the amount of
used LUTs. Assuming that the FPGA synthesis software does not do a complete and
comprehensive optimization, which would be computationally expensive, this can be
explained that under this very specific circumstances the optimization pass does find better
optimization opportunities during synthesis.
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Figure 4.1: TMbox FPGA Usage (with monitoring infrastructure)

The TMbox system uses a FSM to manage the internal states of a processor. This FSM
contains the current state of the processor cache and reacts to memory requests and answers
coming from the ring bus. Figure 4.2 shows, in pseudocode, a simplified image of this
FSM. The full TMbox FSM contains 11 states and 131 transitions. For simplicity only the
four states relevant to TM operations are displayed in the Figure. The newly added event
emitting code parts are marked with red color. The event emitting code was implemented
as unintrusive as possible, the changes in the FSM were in fact accomplished by adding
about 30 lines of VHDL code.
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Figure 4.2: TMbox cache state FSM
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FPGA space usage and impact on clock frequency

The next Figure depicts a visual comparison of the FPGA usage of the monitoring infras-
tructure compared to the overall space usage of the TMbox system:

Figure 4.3: Monitoring infrastructure space usage

Figure 4.3 shows a synthesized, translated, mapped and routed visualization of the FPGA
chip assignment for an 8 core TMbox system. The Figure was created using Xilinx
PlanAhead. Each colored pixel in the Figure is a used hardware unit on the FPGA, for
instance a LUT, BRAM, register, clock generator etc. All units with the same color belong
to the same processor core. The dark blue parts with a blue border are the newly added
units of the monitoring infrastructure.

The implementation of the monitoring infrastructure did not have an impact on the maxi-
mum clock frequency of the TMbox system (50 MHz). Therefore there was no need to
manually identify and optimize critical data and clock paths in the FPGA.
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This chapter describes the visualization and analysis aspects of the developed monitoring
infrastructure and shows two examples of HTM application behavior analysis.

The primary goal of this study thesis has been achieved: The implementation of a mon-
itoring infrastructure for the TMbox platform with no runtime overhead and therefore
no change in application runtime characteristics. This was confirmed experimentally.
The main factor responsible for achieving this goal is the low priority transmission of
monitoring data together with the buffering of to be transferred data.

Further goals have also been accomplished: An accurate overview of the behavior of
a multi-threaded HTM application can be obtained, visualized and analyzed with this
monitoring infrastructure. Several analysis metrics are provided, such as contention/abort
rate, contention between specific threads, time spent in committed and aborted transactions
and overhead caused by the HTM system. These metrics allow to compare different
implementations of an application and to optimize its overall runtime and scalability on a
given HTM system.

A given application can furthermore be analyzed concerning different hardware parameters
(for instance number of processors, HTM unit parameter settings, type of bus intercon-
nection, etc.). These parameters can be varied systematically to reveal the influence of
hardware parameters on a given application’s runtime behavior and it’s performance. Based
on these insights an optimization of the underlying HTM hardware can be made.

The runtime behavior of an HTM program can also be visualized. This enables the
programmer to identify the specific characteristics of different parts of an application and
to detect parts with sub-optimal behavior. This allows to optimize the poorly performing
parts of the application.

The images in this section have been created using the post processing tool BusEvent-
Converter and the visualization and analysis tool Paraver. They show the currently available
visualization views. These views support the TM application programmer in his optimiza-
tion efforts. Additional views can be created using Paraver, but this process is unfortunately
complicated, as the visualization parts of Paraver are undocumented and had to be partially
reverse engineered during this study thesis.

Some of the already known bottlenecks of the TMbox system were confirmed and quanti-
fied with these analysis capabilities. One of these bottlenecks is the increasing memory
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access latency when adding more processor cores to the system, an inherent attribute of a
ring bus type core interconnect. Future work on the TMbox system may therefore evaluate
different approaches to core interconnection, leading to an improved system.

5.1 Introduction to Paraver visualization

Paraver is used to show a timeline of the flow of different HTM states. Each color
corresponds to a certain HTM state. The colors are explained in the next section.

Figure 5.1: Visualization of changing contention levels

Figure 5.1 shows three runs of an application, each with increasing contention levels
(amount of aborts). The application simulates financial transactions and runs on 4 cores.
Dark blue parts indicate computation done in committed transactions, light blue parts on
the contrary indicate computation done in aborted transactions, i.e. wasted work. Yellow
lines connect transactions being aborted with the transaction causing the abort. A green
flag on top of the timeline of a thread indicates an event (change of HTM state).
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5.2 States of a transaction

Figure 5.2: Visualization of four transactions

Figure 5.2 shows a close up picture of four transactions executing in parallel. Each color
signifies a different transaction state. The following states are recognized and can be
analysed:

“Idle”: The application is currently not using the HTM unit

“Compute”: Time spent doing calculations and transactional reads and writes in
successfully commited transactions (i.e. “Useful work”)

“Compute Wasted”: Time spent doing calculations and transaction reads and writes
in aborted transactions (i.e. “Wasted work”)

“Try Lock”: A transaction has finished computing, HTM subsystem tries to prepare
the commit phase by locking the ring bus

“Commit Locked”: Ring bus lock was acquired, transactional data is stored into
RAM

“Abort”: Transaction got invalidated, HTM subsystem is reset and transaction is
prepared for restart

“Read Only”: A read only transaction (i.e. write set is empty)
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5.3 Introduction to Paraver analysis

Figure 5.3: Histogram of time spent in HTM stages

Figure 5.3 shows another high-level view of the third run, the run with the highest con-
tention level. This time a histogram of the exact time spent in various HTM stages is
displayed. The state names and colors correspond to the states explained in the previous
section. The histogram was created using the Paraver analysis module.

It can be seen that threads 2 and 4 have spent a significantly higher amount of time than the
other 2 threads calculating ultimately aborted and thus wasted work. This could be caused
by an work imbalance between these threads. This means that work done on threads 2 and
4 creates more conflicts than the work done on threads 1 and 3.

Various metrics useful for analysis can be also calculated from the shown values: The values
of rows “Try Lock”, “Commit Locked” and “Abort” can be summed up and compared to
the overall runtime to get the amount of overhead incurred by the TMbox HTM subsystem.
A comparison of rows “Compute” and “Compute Wasted” gives a rough idea of contention
on a system level. The minimum, average, maximum and standard deviation rows show
the spread of transaction states, i.e. the difference between the shortest and longest state of
a certain type. A more fine-grained analysis down to the contention between two cores can
also be done.
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5.4 Visual analysis example I - HTM usage

(a)

(b)

(c)

Figure 5.4: Program trace (a) and corresponding rate of commits (b) and number of used
HTM units (c)

Interpretation: These traces show an application with a low amount of aborts. The time
scale of Figures (a) to (c) is the same.

Figure 5.4b shows the rate of commits: Various shades of green correspond to a high rate
of commits and a short duration of committing transactions. Blue shades indicate time
periods with a low rate of commits and a high duration of committing transactions.

Figure 5.4c shows the number of used HTM units over time (on a system level). During
most of the runtime the application uses 2 to 4 HTM units. Later after completion of the
first thread the usage changes to between 1 and 3 used HTM units with an average of 2
used units. Threads 2 and 3 finish computation nearly at the same time. During the last
phase of execution only one HTM unit is used by the last thread. Figure 5.4c is created by
the semantic module of Paraver.
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5.5 Visual analysis example II - High contention

(a)

(b)

(c)

Figure 5.5: Starvation of two threads: Program trace (a) and corresponding rates of com-
mits (b) and aborts (c)

Interpretation: This time a trace of an application with a high amount of aborts is shown.
Light blue parts in the timeline of Figure 5.5a correspond to wasted work, i.e. work done in
aborted transactions. The Figures 5.5b and 5.5c have been created using the filter module
of Paraver. These two Figures show a high rate of aborts (bright green parts) and a low
rate of commits (blue and yellow parts) on threads 2 and 4. Further analysis showed that
threads 1 and 3 were mainly causing a large amount of aborts in threads 2 and 4. The
negative effects of the dependencies between these two groups of threads should therefore
be optimized.
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The monitoring infrastructure developed in this study thesis allows for an in-depth moni-
toring, visualization and analysis of HTM applications running on the TMbox platform.
The monitored application is not affected in its runtime timing characteristics. Using
FPGA technology for the implementation of the monitoring infrastructure allows for fast
execution and analysis of long and complex applications. The HTM application behavior
is traced and stored for post-processing. Post-processing delivers several analysis metrics
that allow to compare different implementations of an application and to optimize their
overall runtime and scalability on a given HTM system.

The visualization and analysis capabilities of the existing tool Paraver have been leveraged
for the purposes of HTM behavior analysis. This novel features enable the programmer to
identify the specific characteristics of different parts of an application and to detect parts
with sub-optimal behavior.

6.1 Outlook

Some of the design ideas of the monitoring infrastructure can be generalized beyond TM.
This will allow the monitoring of other aspects of computer systems:

The event-based design created in this project can be easily extended to enable the analysis
of all parts of processor core operations (like cache, ALU and TLB utilization and memory
access patterns). This kind of data is useful for behavior and optimization research in other
fields of computer science, for instance operating systems and hardware design, and for
the construction of adaptive and self-optimizing systems. The visualization and analysis
features of Paraver can be used for this purpose by extending the post processing program
created in this study thesis with new event types.

Because of the extensibility of the monitoring infrastructure developed during this study
thesis STM systems can also be covered (to trace a pure STM or a combined STM/HTM
(HybridTM) system). The HTM unit of the TMbox system works on a best effort base (i.e.
not all transactions can be executed using HTM). The TM FSM in the processor core, for
instance, issues a fallback to STM mode and restarts the transaction when capacity issues
arise. More insight about the capabilities, characteristics and optimization possibilities
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of HybridTM systems can therefore be obtained by extending the monitoring parts of the
monitoring infrastructure to gather data about a STM system. Such work is currently in
progress.

Additional work on adding phase detection to the post-processing tool BusEventConverter
to automate the analysis process is also currently in progress.

Parts of the post-processing can be ported to VHDL/Verilog and synthesized for use on an
FPGA. Automatic interpretation of the collected data allows to build an adaptive system,
which reconfigures during runtime according to changing application requirements. A
related approach has been published in ”An Organic Computing Approach to Sustained
Real-time Monitoring” [21].

Furthermore the general knowledge gained can help to develop new HTM designs, leading
to faster and more efficient HTM systems.
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Glossary

BEE3 (Berkeley Emulation Engine, version 3) Multi-FPGA system designed to be used
to develop and evaluate new computer architectures

BRAM (Block RAM) Dedicated FPGA on-chip memory storage unit

HTM (Hardware Transactional Memory) Special ISA instructions allow to run some
parts of a TM runtime system directly in hardware; constraint-bound (e.g. capacity
constraints: hardware can handle a specific read-/write-set size, larger transactions
fail

HybridTM (Hybrid Transactional Memory) TM runtime combining HTM and STM sup-
port; transactions run in HTM mode and fall back to STM mode when encountering
HTM constraints

STM (Software Transactional Memory) TM runtime using standard ISA instructions;
no modification of hardware necessary; usually slower than HTM but with more
permissive contraints

TM (Transactional Memory) Programming paradigm, which allows applications to run
atomic blocks using shared data concurrently; uses optimistic conflict checking to
ensure atomicity and consistency
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AMD’s advanced synchronization facility within a complete transactional memory
stack. In: Proceedings of the 5th European conference on Computer systems. New
York, NY, USA : ACM, 2010 (EuroSys ’10). – ISBN 978–1–60558–577–2, S. 27–40

[7] CAO MINH, Chi ; CHUNG, JaeWoong ; KOZYRAKIS, Christos ; OLUKOTUN, Kunle:
STAMP: Stanford Transactional Applications for Multi-Processing. In: IISWC ’08:
Proceedings of The IEEE International Symposium on Workload Characterization,
2008

41



Bibliography

[8] SAHA, Bratin ; ADL-TABATABAI, Ali-Reza ; JACOBSON, Quinn: Architectural
Support for Software Transactional Memory. In: Proceedings of the 39th Annual
IEEE/ACM International Symposium on Microarchitecture. Washington, DC, USA :
IEEE Computer Society, 2006 (MICRO 39). – ISBN 0–7695–2732–9, S. 185–196

[9] DICE, Dave ; LEV, Yossi ; MOIR, Mark ; NUSSBAUM, Daniel: Early experience with
a commercial hardware transactional memory implementation. In: Proceedings of the
14th international conference on Architectural support for programming languages
and operating systems. New York, NY, USA : ACM, 2009 (ASPLOS ’09). – ISBN
978–1–60558–406–5, S. 157–168

[10] SONMEZ, Nehir ; ARCAS, Oriol ; PFLUCKER, Otto ; UNSAL, Osman S. ; CRISTAL,
Adrian ; HUR, Ibrahim ; SINGH, Satnam ; VALERO, Mateo: TMbox: A Flexible
and Reconfigurable 16-Core Hybrid Transactional Memory System. In: Proceedings
of the 2011 IEEE 19th Annual International Symposium on Field-Programmable
Custom Computing Machines. Salt Lake City, UT, USA : IEEE Computer Society,
2011 (FCCM ’11). – ISBN 978–0–7695–4301–7, S. 146–153

[11] FUNG, Wilson W. L. ; SINGH, Inderpreet ; BROWNSWORD, Andrew ; AAMODT,
Tor M.: Hardware Transactional Memory for GPU Architectures. In: 44th IEEE/ACM
International Symposium on Microarchitecture (MICRO-44). Porto Alegre, Brazil,
December 3-7 2011

[12] CEDERMAN, Daniel ; TSIGAS, Philippas ; CHAUDHRY, Muhammad T.: Towards
a Software Transactional Memory for Graphics Processors. In: AHRENS, James P.
(Hrsg.) ; DEBATTISTA, Kurt (Hrsg.) ; PAJAROLA, Renato (Hrsg.): EGPGV, Euro-
graphics Association, 2010. – ISBN 978–3–905674–21–7, S. 121–129

[13] ANSARI, Mohammad ; JARVIS, Kim ; KOTSELIDIS, Christos ; LUJAN, Mikel ;
KIRKHAM, Chris ; WATSON, Ian: Profiling Transactional Memory Applications.
In: Proceedings of the 2009 17th Euromicro International Conference on Parallel,
Distributed and Network-based Processing. Washington, DC, USA : IEEE Computer
Society, 2009. – ISBN 978–0–7695–3544–9, S. 11–20

[14] CHUNG, Jaewoong ; CHAFI, Hassan ; MINH, Chi C. ; MCDONALD, Austen ;
CARLSTROM, Brian D. ; KOZYRAKIS, Christos ; OLUKOTUN, Kunle: The Common
Case Transactional Behavior of Multithreaded Programs. In: In Proceedings of the
12th International Conference on High-Performance Computer Architecture, 2006

[15] ZYULKYAROV, Ferad: Programming, Debugging, Profiling and Optimiz-
ing Transactional Memory Programs (PhD Thesis). http://www.feradz.com/
ferad-phdthesis-20110525.pdf

[16] HAMMOND, Lance ; CARLSTROM, Brian D. ; WONG, Vicky ; HERTZBERG, Ben
; CHEN, Mike ; KOZYRAKIS, Christos ; OLUKOTUN, Kunle: Programming with

42

http://www.feradz.com/ferad-phdthesis-20110525.pdf
http://www.feradz.com/ferad-phdthesis-20110525.pdf


Bibliography

transactional coherence and consistency. In: Proceedings of the 11th international
conference on Architectural support for programming languages and operating
systems. New York, NY, USA : ACM, 2004 (ASPLOS-XI). – ISBN 1–58113–804–0,
S. 1–13

[17] CHAFI, Hassan ; MINH, Chi C. ; MCDONALD, Austen ; CARLSTROM, Brian D.
; CHUNG, JaeWoong ; HAMMOND, Lance ; KOZYRAKIS, Christos ; OLUKOTUN,
Kunle: TAPE: a transactional application profiling environment. In: Proceedings of
the 19th annual international conference on Supercomputing. New York, NY, USA :
ACM, 2005 (ICS ’05). – ISBN 1–59593–167–8, S. 199–208

[18] FAURE, Etienne ; BENABDENBI, Mounir ; PECHEUX, Francois: Distributed online
software monitoring of manycore architectures. In: On-Line Testing Symposium,
IEEE International 0 (2010), S. 56–61. ISBN 978–1–4244–7724–1

[19] BEE3 Research Platform. http://research.microsoft.com/en-us/projects/bee3/,

[20] Paraver Website. http://www.bsc.es/paraver,

[21] BUCHTY, Rainer ; KRAMER, David ; KARL, Wolfgang: An Organic Comput-
ing Approach to Sustained Real-time Monitoring. In: HINCHEY, Mike (Hrsg.) ;
PAGNONI, Anastasia (Hrsg.) ; RAMMIG, Franz (Hrsg.) ; SCHMECK, Hartmut (Hrsg.):
Biologically-Inspired Collaborative Computing Bd. 268. Springer Boston, 2008. –
ISBN 978–0–387–09654–4, S. 151–162. – 10.1007/978-0-387-09655-1 14

43

http://research.microsoft.com/en-us/projects/bee3/
http://www.bsc.es/paraver

	Contents
	1 Introduction
	1.1 Motivation
	1.2 Outline

	2 Transactional Memory and Related Work
	2.1 An introduction to TM
	2.2 Related work
	2.3 Novel ideas

	3 Design
	3.1 The TMbox system
	3.2 Profiling workflow
	3.3 A rationale for event-based monitoring
	3.4 Monitoring units
	3.4.1 Event Generation Unit
	3.4.2 Log Unit
	3.4.3 Bus Controller Unit

	3.5 Post-Processing
	3.5.1 The BusEventConverter tool
	3.5.2 The Paraver visualization and analysis program


	4 Implementation
	5 Results
	5.1 Introduction to Paraver visualization
	5.2 States of a transaction
	5.3 Introduction to Paraver analysis
	5.4 Visual analysis example I - HTM usage
	5.5 Visual analysis example II - High contention

	6 Summary
	6.1 Outlook
	6.2 Acknowledgements


