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Abstract—Multi-core prototyping presents a good oppor-
tunity for establishing low overhead and detailed profiling
and visualization in order to study new research topics. In
this paper, we design and implement a low execution, low
area overhead profiling mechanism and a visualization tool
for observing Transactional Memory behaviors on FPGA. To
achieve this, we non-disruptively create and bring out events
on the fly and process them offline on a host. There, our
tool regenerates the execution from the collected events and
produces traces for comprehensively inspecting the behavior
of interacting multithreaded programs. With zero execution
overhead for hardware TM events, single-instruction overhead
for software TM events, and utilizing a low logic area of
2.3% per processor core, we run TM benchmarks to evaluate
various different levels of profiling detail with an average
runtime overhead of 6%. We demonstrate the usefulness of
such detailed examination of SW/HW transactional behavior
in two parts: (i) we speed up a TM benchmark by 24.1%, and
(ii) we closely inspect transactions to point out pathologies.

I. INTRODUCTION

The low performance of legacy architectural simulator
software to investigate new generation Chip Multi-Processor
(CMP) architectures is being addressed in a few ways: the
development of new parallel simulators [1], parallelization
efforts for sequential simulators [2], and prototype/emulation
implementations on reconfigurable fabric [3], [4]. FPGAs
were proven successful in accelerating simulations working
in concert with a host computer, as well as FPGA-only
multi-core MPSoC implementations [5], [6].

A proposal that has drawn considerable attention to apply
parallel programming to these new shared-memory CMPs
has been the use of Transactional Memory (TM). In TM,
shared critical sections of a program are encapsulated inside
atomic{} transactions, and the underlying TM mechanism
automatically detects data inconsistencies and aborts and
restarts transactions. This ensures deadlock-free transac-
tional code segments to run in an all-or-none manner, saving
the programmer from explicitly dealing with locks.

TM support can be provided by flexible but slower soft-
ware libraries (STM), or by using fast, dedicated hardware
(HTM). An HTM system is usually bound by some sort
of capacity constraints, i.e. the hardware can only handle

transactions with specific characteristics. Hybrid TM aims
to provide the best of two worlds. Transactions first attempt
to run on the dedicated TM hardware and fall back to
software when it is not possible to complete the transaction
in hardware (e.g. when resources are exceeded) [7]. ATLAS
and later Configurable TM were the first systems to support
hardware TM on FPGA[8], [9]. Hardware acceleration pro-
posals by using Bloom filters for TM were also investigated
[10], [11], as well as Hybrid TM on FPGA [12].

But another issue remains: Performance and scalability
are both important for a successful adoption of TM. Profiling
executions in detail is absolutely necessary to have a correct
understanding of the qualities and the disadvantages of
different implementations and benchmarks. A low-overhead,
high-precision profiler that can handle both hardware and
software TM events is required. Up to now, no compre-
hensive profiling environment supporting STM, HTM and
Hybrid TM has been developed.

Due to its flexibility and extensibility, an FPGA is a very
suitable environment for implementing profiling mechanisms
and offers a unique advantage based on three main aspects.
Firstly, compared to a software simulator, there are no
overheads in simulation time due to the special hardware
added. Moreover, FPGAs emulate real hardware interfacing
real storage or communication devices and exhibit a higher
degree of fidelity than software simulators. Second, the rela-
tive area overhead for implementing extra profiling circuitry
can be very low, and the throughput high, as we demonstrate.
Third, because of its customizability, we are free to extend
the architecture with new application-specific instructions
for profiling. We use this flexibility to reduce the software
overheads of the profiling calls added to the programs, as
we will show with the new event instruction.

Using these advantages in utilizing FPGAs for multicore
prototyping, we address three main issues:

• STM application profiling can suffer from high over-
heads, especially with higher levels of detail (e.g. look-
ing into every transactional load/store). Such behavior
may influence the application runtime characteristics
and can affect and alter the interactions of threads in the
program execution, producing unreliable conclusions.



• Hardware extensions for a simulated HTM system and a
software API was suggested by the flagship HTM-only
profiling work, TAPE [13]. It is useful for pinpointing
and optimizing undesired HTM behaviors, but incurs
some overhead due to API calls and saving profiling
data to RAM. We argue that using an FPGA platform,
hardware events can come for free.

• Visualizing executions in a threaded environment can
be an efficient means to observe transactional appli-
cation behavior, as was looked into in the context of
an STM in C# [14]. A profiling framework facilitates
capturing and visualizing the complete execution of
TM applications, depicting each transactional event of
interest, created either by software or by hardware.

The purpose of this work is to address these shortcomings
and to develop a complete monitoring infrastructure that can
accept many kinds of software and hardware transactional
events with low overhead in the context of a Hybrid TM
system on FPGA. This is the first study to profile and
visualize a Hybrid TM scenario, with the capabilities to
examine in detail how hardware and software transactions
can compliment each other. For gathering online profiling
information, first we describe (i) profiling hardware that
supports generating TM-specific hardware events with zero
execution overhead, and (ii) an extension to the Instruction
Set Architecture (ISA) called the event instruction that
enables a low, single-cycle overhead for each event gener-
ated in software. Later, a post-processing tool that generates
traces for the threaded visualization environment Paraver
[15] is engaged. The resulting profiling framework facilitates
to visualize, identify and quantify TM bottlenecks: It allows
to understand the interaction between the application and
the TM system, and it helps to detect bottlenecks and other
sub-optimal behavior in the process. This is very important
for optimizing the application for the underlying system, and
for designing faster and more efficient TM systems.

Running full TM benchmarks, we compare different levels
of profiling and their overheads. Furthermore, we show
visualization examples that can lead the TM program-
mer/designer to make better and more reliable choices. As
an example, we demonstrate how using our profiling mech-
anism the Intruder benchmark from STAMP [16] can be
ported to best utilize Hybrid TM resources. Such a HW/SW
event infrastructure can be easily modified to examine in
detail full complex benchmarks in any research domain.

The next section presents the design objectives and the
TMbox system used, a Hybrid TM implementation on
FPGA. Section III explains the infrastructure that imple-
ments the profiling mechanism in order to produce mean-
ingful HTM/STM events and to process them offline on
a host. Section IV presents overhead results running TM
applications and example traces illustrating the features of
our profiling mechanism. Section V concludes the paper.

II. DESIGN OBJECTIVES

To get a complete overview of TM behavior, it is vital
to have a system with low impact on application runtime
characteristics and behavior, otherwise the optimization hints
gathered could cause a misguided attempt to ameliorate the
system. Since the profiling infrastructure will be designed on
actual hardware, we cannot implement unrealistic behavior,
and the new circuitry has to map well on the reconfigurable
fabric, with minimal overheads. We made three key design
choices to get low execution and low area overhead and not
to disturb placing and routing on the FPGA:

• Non-intrusively gather and transfer runtime information
by implementing the monitoring hardware separately.
Build the monitoring infrastructure only by attaching
hardware hooks to the existing pipeline.

• Make use of the flexibility of the ISA and the GCC
toolchain to add new instructions to the ISA to support
STM events with low profiling overhead.

• Use little area on the FPGA by adding minimal ex-
tra circuitry, without widening the buses or causing
extra routing overheads. To transfer the events non-
disruptively, instead of adding a new events network,
we utilize the idle cycles on an already-existing net-
work.

A. TMbox architecture
For this work, a multicore prototype that can fit many

cores on a single chip with support for STM, HTM and Hy-
brid TM was needed. A completely modifiable architecture
would help us change the ISA and the software toolchain.
The TMbox system [12] features an open-source Hybrid
TM implementation of up to 16 MIPS soft processor cores
interconnected with a bi-directional ring bus on a Virtex5-
155t FPGA of the BEE3 prototyping platform [17].

The TMbox system features the best-effort Hybrid TM
proposal ASF [18], which is used with TinySTM [19], a
lightweight word-based STM library. The transactions are
first started in hardware mode with a start tx instruction. A
transactional load/store causes a cache line to be written to
the special TM Cache. Commit tx ends the atomic block and
starts committing it to memory. An invalidation of any of
the lines in the TM Cache causes the current transaction to
be aborted (Figure 1). Transactions are switched to software
mode when (i) TM Cache capacity, which is by default 16
cache lines (256 bytes) is exceeded, (ii) the abort threshold is
reached because of too much contention in the system or (iii)
the application explicitly requires it, e.g. in case of a system
call or I/O inside of a transaction. In software mode, the
STM library is in charge of that transaction, keeping track
of read and write sets and managing commits and aborts.
This approach enables using the fast TM hardware whenever
it is possible, but meanwhile to have an alternative way of
processing transactions that are more complex or too large
to make use of the TM hardware.



Post Processing Visualization Behavioral Analysis

Host PC

PCIe
Channel

Core 0

Core 1

Core 2Core 3Core 4Core 5

Core 6

Core 7
Bus

Controller
DDR

Controller

RAM

Inv

DDR
Req/Resp

To/From
previous

node
Events

Event
FIFO

Core 7

Cache
FSM

Log Unit

Bus Node L1 Cache

TM Cache

Event Generation

MIPS
Processor Core

Event

Mem
resp

Invalidation

DDR / Bus
Controller

Mem
req

PCIe
FIFO

Core 0

Events
Event
FIFO

Cache
FSM

PCIe
endpoint

Hooks added:
- tx start
- tx commit
- tx abort
- tx inv
- lock bus
- unlock bus
- tx read/write

To/From
next
node

Figure 1. An 8-core TMbox system block diagram and modifications made to enable profiling (shaded).

The hardware TM implementation supports lazy commits:
Modifications made to the transactional lines are not sent to
memory until the whole transaction is allowed to success-
fully commit [12]. However, TinySTM supports switching
between eager and lazy commit and locking schemes as we
will look into with software transactions in Section IV-B.

A bidirectional ring bus interconnects the CPUs of the
TMbox. This design decision allows for an FPGA-friendly
implementation: Short wires ease the placement on the chip
and relax timing and routing constraints (a property that
we do not want to break). It also helps keeping the caches
coherent; CPU requests and DDR responses move counter-
clockwise, whereas invalidation signals that are generated by
writes to the DDR move in the opposite direction (Figure 1).
Whenever a write request meets an invalidation to the same
address on any node of the ring bus, it gets cancelled. Mean-
while, the caches on each core also snoop and discard the
lines corresponding to the invalidation address, effectively
enabling system-wide cache coherency.

B. Network reuse

To cause as little area and routing overhead as possible,
we discard the option of adding a dedicated network for
events. Instead, we choose to piggyback on an existing
network. More particularly, we utilize the idle cycles on
the less-frequently-used invalidation bus. However, we do
not want to disturb the execution by causing extra network
congestion, so we give a lower priority to profiling events
by first buffering them and transferring them only when a
free cycle on the bus is detected. This way, the profiling
packets do not disrupt the traversal of the already-existing
invalidation packets in any way.

Although this approach might be somewhat specific to the
TMbox architecture, we believe that the methodology of al-
ways first buffering the created events, and injecting them in
the network only on a free slot could be applied to different
network types, as well. Future work could address how to
implement similar functionality on a different network type,
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Figure 2. Event format for the profiling packets.

such as a mesh or a tree. A disadvantage of this approach
is that the fixed message format of the invalidation ring bus
has to be matched. Another drawback is watching out for
buffer overflows. The next section explains in detail how
the design decisions affected the way the TMbox system
was modified to support creating, propagating, transferring
and post-processing timestamped TM events.

III. THE PROFILING AND VISUALIZATION
INFRASTRUCTURE

The profiling and visualization framework consists of
performing three steps on the FPGA and the final step on
the host computer. First, the TM behavior of interest is
decomposed into a small, timestamped event packet con-
taining information about the change of state. Second, the
event is propagated on the bus to the central Bus Controller
node. Third, from the node, it is transferred on the fly by
PCI Express (PCIe) to a host computer. Finally, the post-
processing application running on the host parses all event
packets and re-composes them back to meaningful, threaded
events with absolute timestamps, and creates the Paraver
trace of the complete application.

A. Event specification and generation

1) HTM events: The event generation unit (Figure 1)
monitors the TM states inside the cache Finite State Machine
(FSM) of the processor, generating events whenever there is
a state change of interest, e.g. from tx start to tx commit.
Figure 2 shows the format of an event in a detailed way.
The timestamp marks the time when an event occurred,
and is delta-encoded: only the time difference in cycles
between two consecutive events is sent. This space-efficient



encoding allows a temporal space of about a million cycles
(20 ms @ 50 MHz) between two events occurring on
a processor. The event data field stores additional data
available for an event, for instance the cause of an abort
(e.g. capacity overflow, software-induced, invalidation). Due
to the 4-bit wide event type, we can define up to 16
different event types. Some of the basic event types defined
for hardware transactions include: tx start, tx commit, tx
abort, invalidation, lock/unlock ring bus (for performing
commits). These hardware events come with zero execution
overhead, since the profiling machinery works in parallel to
the cache FSM. Our infrastructure supports easily adding
and modifying events, as long as there is a free event type
encoding available in hardware.

The fact that we can only use 20 bits for the timestamp
in order to match the predefined message format can cause
wraparounds, so the Paraver threads can fail to be properly
synchronized. To address this, we added an extra event type
that is very rarely used. When it detects a timestamp counter
overflow, in the next event, it also sends the number of idle
timestamp overflows occurred along with the timestamp.
Although the bus and the event messages could also be
widened, we opted for modifying the existing hardware as
little as possible to accomplish as low overhead as possible.
This is also the reason why we eliminated the option of
having a separate bus only for the events.

2) Extending the ISA with STM events: For generating
low overhead events from software, an event instruction
was added to the processor model by modifying the GNU
Compiler Collection (GCC) and the GNU Binutils suite
(GAS and objdump). The event instruction creates STM
events with a similar encoding to the HTM events, support-
ing up to 16 different software events that are implemented
in special event registers. Little hardware with a small area
overhead of 32 LUTs/core had to be added: extending the
opcode decoder, some extra logic for bypassing the data, and
multiplexing it into the event FIFO. More complex processor
architectures might need to be more heavily modified to add
new instructions and registers.

However, the ability to create such precise events from
software with single-instruction overhead is a very pow-
erful tool for closely inspecting a variety of behaviors.
Software events can be modified simply by storing the
wire/register/bus values of interest in event registers and by
reading them from software with an event call.

Similar to the “free” hardware events discussed earlier,
the events generated in software also utilize the same event
FIFO. However, software events have some execution over-
head: one instruction per event. In the next section, we com-
pare execution overheads of this approach to software-only
events created on a commodity machine, and demonstrate
that utilizing the event instruction actually contributes to
a smaller overhead in runtime.

B. Event propagation on the bus

A logging unit captures events sent by the event genera-
tion unit located in each core. Here, the event is timestamped
using delta encoding and enqueued in the event FIFO. As
soon as an idle cycle is detected on the invalidation bus, the
event is dequeued and transferred towards the bus controller.

To prevent a disturbance of program runtime behavior,
the profiling events are classified as low-priority traffic on
the invalidation ring bus. So, invalidation packets always
have higher priority. Consequently, when the ring bus is busy
transferring invalidation messages, it is necessary to buffer
the generated events. To keep the events until a free slot is
found, event FIFOs (one BRAM each) were added to each
core, as shown in Figure 1.

The maximum rate at which an invalidation can be
generated on the TMbox is once every three cycles. The
DDR controller can issue a write every three cycles, which
translates into an invalidation message that has to traverse
the whole bus. Therefore, for an 8-core ring setup, the
theoretical limit of starting to overflow into the event FIFOs
is when one event is created by all cores every 12 cycles.
Using a highly contended shared counter written in MIPS
assembly, we observed that the FIFOs never needed to have
more than 4 elements. This is the worst case behavior: TM
programs written in high level languages incur further over-
head through the use of HTM/STM abstraction frameworks
and thus would actually exhibit a smaller pressure on the
buffers of the monitoring infrastructure.

Changing the network type for the system would imply
the need to modify the infrastructure to look for and to
use empty cycles or to add another data network for events
which would come with routing issues and area overhead.
While with a dedicated event bus this step would have
been trivial, better mapping on the FPGA requires a lower
cost approach. Therefore, we reuse the already-available
hardware and only incurring area overhead by placing FIFOs
to compensate for traffic congestion.

C. Transfer of events to the host

To transfer the profiling packets, we use a PCIe connec-
tion that outputs data at 8 MB/sec, coupled with a large PCIe
output FIFO placed to sustain temporary peaks in profiling
data bandwidth. In our executions, we did not experience
overflows and lost packets, although the throughput of
the PCIe implementation is obviously limited. A suitable
alternative for when a much greater amount of events are
created (e.g. at each cache miss/hit), might be to save to
some large on-chip DDR memory instead of transferring the
events immediately. However this memory should preferably
be apart from the shared DDR memory of the multicore
prototype, for reasons of non-disruptiveness. The profiling
data might reach sizes of many MB, so saving the profiling
data on on-chip BRAMs is not a viable option.



Table I
AREA OVERHEAD PER PROCESSOR CORE AND THE TRACKED EVENTS IN DIFFERENT PROFILING OPTIONS

Profiling Type Area Overhead (per CPU core) Actions Tracked

STM-only (x86 host) NONE SW start tx, SW commit tx, SW abort tx
STM-only 32 5-LUTs + 1 BRAM SW start tx, SW commit tx, SW abort tx
HTM-only 129 5-LUTs + 1 BRAM HW start tx, HW commit tx, HW abort tx,

lock bus, unlock bus, HW inv, HW tx r/w, HW PC
Hybrid TM (CG) 129 5-LUTs + 1 BRAM HTM-only + STM-only
Hybrid TM (FG1) 129 5-LUTs + 1 BRAM Hybrid TM (CG) + SW tx r/w + tx ID
Hybrid TM (FG2) 129 5-LUTs + 1 BRAM Hybrid TM (FG1) + SW inv + SW PC
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Figure 3. STAMP-Eigenbench Benchmark Overheads

D. Post-processing and execution regeneration

After the supervised application has terminated, and all
events have been transferred to the host machine, they are
fed in to the Bus Event Converter. This program, which we
implemented in Java, (i) parses the event stream, (ii) rebuilds
TM and application states, and (iii) generates statistics that
are compatible for visualizing with Paraver [15]. The mature
and scalable program Paraver was originally designed for
the processing of Message Passing Interface (MPI) traces,
which we adapted to visualize and analyze TM events and
behavior. Our post-processing program converts the relative
timestamps to absolute timestamp values and re-composes
the event stream into meaningful TM states. At this point,
additional states can also be created, depending on the
information acquired through the analysis of the whole
application runtime. This removes the need to modify the
hardware components to add and calculate new states and
events during the execution, and allows for a more expressive
analysis and visualization.

IV. EXPERIMENTAL EVALUATION

In order to demonstrate the low overhead benefits of the
monitoring framework proposed, we ran STAMP [16] ap-
plications using Eigenbench [20], a synthetic benchmark for
TM mimicry. STAMP is a well-known TM benchmark suite
with a wide range of workloads, and Eigenbench imitates

its behavior in terms of number and size of transactions,
read/write sets and many other orthogonal characteristics.
We used the parameters for five STAMP benchmarks pro-
vided by the authors of Eigenbench. We compare runtime
overheads of the profiling hardware to an STM-only imple-
mentation which generates runtime event traces in a way
comparable to our FPGA framework. This version called
STM (x86) tracks each transactional start, commit, and abort
events in TinySTM running on a Westmere1 server. The
events are timestamped and placed in a buffer, which is
written to a thread-local file handle.

Along with STM and HTM profiling, we engage three
levels of Hybrid TM profiling to enable both light and
detailed profiling options. The coarse-grained (CG) version
features the typical HTM and STM events (Table I). Besides
the most common start tx, commit tx and abort tx events,
we also look at invalidation events and the overheads of
locking/unlocking the bus for commits (part of the HTM
commit behavior of TMbox). Additionally, there are two
fine-grained profiling options that are implemented through
the event mechanism in software. FG1 includes tracking
all transactional reads and writes, also useful for monitoring
readset and writesets. It also keeps transaction IDs, which
are needed for dynamically identifying atomic blocks and
associating each transactional operation with them.

1OS is Linux version 2.6.32-29-server (Ubuntu 10.04 x86_64).
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Figure 4. Improving Intruder-Eigenbench step by step from an STM-only version to utilize Hybrid TM appropriately.
STM-only: Here, the TM application is profiled with FG1 level profiling, where a count of the number of read/write events for each transaction is kept.
By analyzing the profiled data, we discover a certain repetition of small transactions which can benefit from HTM acceleration. However, there also exist
very large transactions, suggesting that an HTM-only approach is not feasible.
Hybrid-TM-16: Introduces HTM with a 16-entry TM Cache per processor core, so this trace depicts both STM and HTM events. CPU 0 seems to have
benefited from using HTM (as shown in the table in Figure 4), although there are still some small transactions on other CPUs that might fit if the hardware
buffers are increased in size. Please note that a poorly-configured Hybrid TM can end up showing worse performance than an STM.
Hybrid TM-64-CTL: Uses a larger, 64-entry TM Cache. Here, CPUs 1 and 3 also start utilizing HTM efficiently, causing the software transactions to
reduce in number. However, CPU 2 suffers from long aborting transactions and a large wasted work. Looking at the available software TM options, we
switch from Commit Time Locking (CTL) to Encounter Time Locking (ETL) to discover some conflicts early and to decrease the abort overheads.
Hybrid TM-64-ETL: On overall, a 24.1% speedup in execution time when moving from STM-only to Hybrid TM-64-ETL was observed. Although there
are only 3 fewer aborts in software now, they cause much less wasted work, helping the application to run faster to completion.

In addition, the maximum profiling level FG2 that we im-
plemented features source code identification, a mechanism
for monitoring conflicting addresses and their locations in
the code. For enabling this, a JALL (Jump And Link and
Link) instruction was added to the MIPS ISA. This extends
the standard JAL instruction by storing an additional copy
of the return address, which is kept as a reference to be
able to identify the Program Counter (PC) of the instruction
that is responsible of the subsequent transactional read/write
operations in TinySTM. This way, a specific event with
that unique PC is generated by the transactional operations
in these subroutines, effectively enabling us to identify the
source code lines with low overhead.

A. Runtime and area overhead

In Figure 3a, STM (x86) profiling overhead was compared
to our FPGA framework with the same level of profiling
detail (STM-only). The overhead introduced by the FPGA
implementation is less than half of the STM (x86) overhead,
on average. This is largely due to adding the event instruc-
tion to the ISA to accomplish a single instruction overhead
per software event. Please note that if the transactional read
and write events were tracked additionally, we would expect
a larger slowdown for STM (x86).

Figure 3b shows the extra overhead that our FPGA profiler
causes by turning on all kinds of TM profiling capabilities.
Almost half a million events were produced for some
benchmarks. With the highest level of detail, the average

profiling overhead was less than 6% and the maximum 14%.
When the transactions can be run on the dedicated hard-

ware, as in the case of SSCA2, the overall profiling overhead
is lower. This is because hardware events come “for free”
and less work has to be done in software, where there is
some overhead. Therefore, the success of the Hybrid TM
drives that of the TM profiling machinery. The higher the
percentage of transactions that can complete in hardware, the
faster and more efficient the execution of the TM program
is, and the more lightweight is the profiling. Conversely,
Genome has many transactions that never fit the dedicated
TM hardware and exhibit higher overheads. For future work,
we want to investigate new techniques that could allow zero
runtime overhead in STM profiling. This would also avoid
the interferences caused by profiling in the normal program
behavior, which we observed in the case of Vacation.

Interesting cases of low Hybrid TM CG overheads appear
when running Genome with 4 threads and SSCA2 with 2 and
8 threads. This behavior is due to the specific Eigenbench
parameters for STAMP benchmarks, eg. Genome’s parame-
ter values for CPU 3 are huge and cause the application to
behave much differently for 4 threads than for 2 threads.

The inclusion of profiling hardware to TMbox results in
a 2.3% increase in logic area, plus the memory needed to
implement the event FIFO (1 BRAM) for each processor
core. The fixed area overhead of the PCIe endpoint plus the
PCI_FIFO occupies 3978 LUTs and 30 BRAMs. The critical
path was not affected by these changes.
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Figure 5. Example traces showing phased behavior and transactional pathologies in Intruder, a network intrusion detection algorithm that scans network
packets for matches against a known set of intrusion signatures.
The benchmark consists of three steps: capture, reassembly, and detection. The main data structure in the capture phase is a simple queue, and the reassembly
phase uses a dictionary (implemented by a self-balancing tree) that contains lists of packets that belong to the same session.
a) Phased behavior: A program does not always exhibit the same behavior throughout its execution, and in terms of TM might show different phases
of high aborts, shorter transactions, or serialization. In the first half of this trace, there are more transactions and parallelism. Here, the packets are being
constructed by all the threads and there is not enough complete data to process for detection. In the second half of the execution, complete packets are
ready for the detector function, which generates less (but larger) transactions in number, which results in more conflicts among them. Dynamic switching
mechanisms would be suitable for treating adequately phased behavior in TM applications.
b) Starvation: A clear example of starvation on CPUs 3, 5, 6 and 7 (towards the beginning of the benchmark) is shown.
c) Killer transaction: Illustrates a single transaction (CPU 7) aborting six others. After it commits, other CPUs can finally take the necessary locks and
start committing successfully.
d) Repetitive aborts: Demonstrates the pathology of repetitive aborts and its effect on the execution, as in [21]. Finding the optimal abort threshold (to
switch to STM mode) could be important in such cases.

B. Improvement Opportunities

In this section, we present sample Paraver traces for the
Intruder benchmark to demonstrate how our low overhead
profiling infrastructure can be useful in analyzing TM bench-
marks and systems. First, we run the Eigenbench-emulated
Intruder and suggest a simple methodology to improve the
application’s execution for the appropriate usage of TM
resources. Next, to visualize TM behavior and patholo-
gies from real application characteristics, we depict some
example traces running the actual, non-emulated Intruder
benchmark from the STAMP suite.

1) Intruder-Eigenbench: Figure 4 shows the four traces
of a simple refinement process using our profiling mech-
anism. By running the STAMP application Intruder with
4 CPUs, we attempt to derive the best settings both in
hardware and in software for running this application in
Hybrid TM mode. The program has to complete a total of
410 transactions on four threads. Around 300,000 events are
generated in the highest profiling mode for this benchmark.
On overall, a 24.1% improvement in execution time was

observed when moving from STM-only to Hybrid TM-64-
ETL. This final version of Intruder is able to utilize both the
TM hardware and the software TM options better.

2) Intruder-STAMP: To pinpoint real application behav-
ior, the actual non-emulated Intruder from STAMP was ran
with 128 attacks [16]. Intruder is an interesting benchmark
in the sense that (i) it contains a mix of short and long
transactions that can sometimes fit in the dedicated transac-
tional hardware, and other times overflow, (ii) typically has
a high abort rate which is interesting for TM research, (iii)
exhibits real transactional behavior, such as I/O operations
inside transactions, and (iv) demonstrates phased behavior,
which shows an inherent advantage of our visualization
infrastructure.

Figure 5 describes and depicts phased behavior and some
examples of different pathologies that can be discovered
thanks to the profiling framework. Some solutions to these
problems include rewriting the code, serialization, taking
pessimistic locks or guiding a contention manager that can
take appropriate decisions.



Our infrastructure could perform additional actions au-
tomatically. Some transactions are more suitable to run
in software and others in hardware. Detecting HW/SW
partitioning can avoid the wasted work caused by the trans-
actions that are sure to abort in HTM mode. Automatic
switching the STM mechanisms (CTL vs. ETL, or lazy
vs. eager versioning), either statically or dynamically, could
be achieved by looking at how early the aborts happen,
transaction sizes and other relevant data. Additionally, by
modifying the application software and the post-processing
application, and adding events of interest, various advanced
profiling information can be reached by analysis. Some
examples are to draw sets/tables of conflicting atomic{}
blocks, or read/write sets. Profiling the reasons of the aborts
could help contention management schemes. Such advanced
STM profiling was studied in Java [22] and Haskell [23].

V. CONCLUSIONS

An FPGA, for its flexibility in programming and its speed,
is a convenient tool for the customization of hardware and
application-specificity. Based on this, we have built the first
profiling environment capable of precise visualization of
HTM, STM and Hybrid TM executions in a multi-core
FPGA prototype. We have used a post-processing tool for
events and Paraver for their interactive visualizations. Taking
into consideration non-intrusiveness and low overhead, the
extra hardware added was small but efficient. It was possible
to run STAMP TM benchmarks with maximum profiling
detail inside the 14% overhead limits. On average, we
incurred half the overhead of an STM-only software profiler.
Our infrastructure also proved successful to port the Intruder
benchmark to use Hybrid TM and get a speedup of 24.1%,
and to detect bottlenecks and transactional pathologies.

The profiling framework could be easily adapted to work
for any kind of multicore profiling and visualization, and
with other state-of-the-art shared memory hardware pro-
posals such as speculative lock elision, runahead execution
or speculative multithreading. The event-based framework
created in this project can be easily extended to enable the
analysis of various processor core functionalities such as
ALU, TLB and cache operations, locking behavior or mem-
ory access patterns, which can be useful for the construction
of adaptive and self-optimizing systems.
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