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Zusammenfassung

Über lange Zeit wurden Geschwindigkeitssteigerungen bei Prozessoren im Wesentlichen
durch die Erhöhung der Taktfrequenz und durch die Optimierung der Mikroarchitektur
erreicht. Dieser bislang beschrittene Weg ist nicht mehr wie im bisherigen Maße gangbar.
Weitere Geschwindigkeitssteigerungen sind jedoch durch den Einsatz von Mehrkernarchi-
tekturen erreichbar. Die Verteilung der Arbeitslast einer Anwendung auf parallel rechnende
Kerne, das heißt die Parallelisierung der Anwendung, wird damit essentiell für einen hohen
Durchsatz. Traditionelle Verfahren zur Programmierung von mehrfädigen Anwendungen
sind schwierig zu erlernen, aufwendig in der Anwendung und eine bedeutende Quelle für
Programmierfehler. Ein Programmier-Konzept für solche Anwendungen sollte deshalb im
Interesse der Fehlerfreiheit einfach zu nutzen sein und eine hohe Rechengeschwindigkeit
ermöglichen. Transactional Memory ist ein solches Konzept, mit dem diese Ziele für
mehrfädige Anwendungen auf Mehrkernsystemen erreicht werden können.

Neuere Forschung hat gezeigt, dass einige Transactional Memory Anwendungen aus
verschiedenen Phasen mit unterschiedlichen Charakteristiken (z.B. Verhältnis von ab-
gebrochenen zu erfolgreichen Transaktionen) bestehen. Die vorliegende Diplomarbeit
setzt an diesem Punkt an und zeigt auf, wie die Laufzeit solcher Transactional Memory
Anwendungen durch die Anwendung von verschiedenen Transactional Memory Strategien
verringert werden kann. Der vorgestellte adaptive Optimierungsprozess erlaubt eine dy-
namische Optimierung von Transactional Memory Anwendungen mit Programmphasen.
Die Umschaltung der Strategie erfolgt dynamisch während der Laufzeit der Anwendung.
Weiterhin wird eine Beobachtungsinfrastruktur entworfen, die die für die Analyse der Pro-
grammphasen einer Anwendung nötigen Informationen sammelt und für eine Auswertung,
z.B. für die oben genannte dynamische Umschaltung der Transactional Memory Strategien,
zur Verfügung stellt. Desweiteren wird die Umsetzung des vorgestellten Systems auf einem
FPGA Board vorgestellt, Kriterien für den Entwurf der beteiligten Hardware-Komponenten
erläutert sowie experimentell ermittelte Messergebnisse diskutiert.
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1. Introduction

This chapter contains the motivation, the aims and the outline of this diploma thesis.

1.1. Motivation

Transactional Memory is a new paradigm for programming parallel applications, which
tries to fulfill the promises of being easy to use for programmers while delivering good
scalability and high performance. It tries to keep the additional complexity added by
programming parallel applications low by providing advanced data access semantics to
application programmers.

Recent research by Rossbach et. al. in "Is transactional programming actually easier?" [1]
and by Pankratius et al. in "A study of transactional memory vs. locks in practice" [2]
shows that using Transactional Memory simplifies the programming of parallel applica-
tions. A Transactional Memory runtime provides Transactional Memory semantics for
an application. The runtime is needed to execute Transactional Memory applications. To
get high performance and scalability for each application a programmer currently has to
manually set the different strategies and settings for a Transactional Memory system. A
strategy in a Transactional Memory system is, for instance, how and when to detect con-
flicts between transactions. A state-of-the-art mechanism is commit time locking (CTL),
where conflict checking between transactions is deferred until commit time. The strategy
operates under the optimistic assumption that two transactions will not conflict during
runtime or at least not often. Another more pessimistic strategy is encounter time locking
(ETL), which checks for conflicts before the transaction tries to commit by acquiring locks
and holding them until commit time. CTL provides advantages in application phases with
a low amount of contention between threads, whereas ETL is more suitable for phases
with high contention.

An application programmer has to specify the value of the settings and which strategies
are used before executing his Transactional Memory application. It is difficult to select a
set of strategies and settings beforehand without further insight into the behavior of the
application. The application programmer therefore has to select a set of strategies and
settings though typically not having any knowledge about the transactional behavior of the
application. Furthermore it is time intensive to select the best-suited settings and it requires
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1. Introduction

a thorough understanding of the interaction between an application and the Transactional
Memory implementation. This contradicts the simplicity of the Transactional Memory
programming model. Furthermore, some Transactional Memory applications exhibit a
phased behavior, where transactional behavior, characterized by, for example, the level
of contention, changes strongly during execution of the application. The periods of time
with stable transactional characteristics are called program phases. Even if an optimal
set of strategies and settings for the first program phase is selected at the very start of
the application it can lead to decreased performance in program phases with a differing
transaction behavior. As a consequence selecting the settings statically at compile time
before executing the application comes with the disadvantage that the settings may not suit
all program phases. This may lead to a suboptimal or even poor performance as a static
strategy can not adapt to changing transactional characteristics.

1.2. Aims

The aims of this diploma thesis in order to contribute to the state-of-the-art research in this
field are the following: First to show that some transactional memory applications exhibit
program phases with differing transactional characteristics. Further to allow the exploiting
of program phases in an FPGA-based Hybrid Transactional Memory system by designing
and implementing an appropriate software and hardware framework. Additionally an
adaptive process is designed and implemented, which allows to use the framework for
dynamic optimization during runtime by switching on-the-fly between different Transac-
tional Memory strategies. A further contribution in this thesis is to provide experimental
results that show that the performance of phased transactional memory applications can be
improved by using the adaptive process mentioned above.

1.3. Outline

This diploma thesis is structured as follows: Chapter 2 contains a short introduction
to concurrent programming and Transactional Memory. It also shows related work on
Transactional Memory, tracing and adaptive systems. The novel ideas of this diploma thesis
are also explained there. The following chapter 3 introduces a state-of-the art Transactional
Memory system. Chapter 4 presents the design for an adaptive Hybrid Transactional
Memory System. Chapter 5 is focused on the implementation of the proposed design.
Chapter 6 shows the results originating from this diploma thesis. The thesis ends with
Chapter 7 by summarizing the results of this diploma thesis and presenting possible future
extensions. The appendix contains additional information, a glossary and the bibliography
of referenced papers.
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2. Fundamentals and related work

The chapter introduces concurrent programming and commonly used techniques for pro-
gramming parallel applications. Since Transactional Memory is used as the fundamental
programming paradigm for parallel applications in this diploma thesis an introduction to it
is included in this chapter. Further sections include an related work and a summary of the
novel ideas in this thesis.

2.1. Introduction to concurrent programming

Until some years ago, the performance increase of mainstream processors was mainly
achieved by increasing the processor frequency and, by a lesser degree, with micro-
architecture optimizations. Increasing power consumption and declining performance
advances between processor architecture steps made this approach infeasible to continue.
For this reason current desktop processors have adopted a multi-core type architecture,
where multiple processor cores are connected using an on-chip system interconnect. On-
going industry expectations currently reach a 30 times performance increase in the next
10 years using this approach (for more information see Borkar et al. "The Future of
Microprocessors" [3]), as the expectation is that the number of cores per chip will rise
considerably in the future. This also means that sequential algorithms will not perform
much faster in the future.

To obtain full performance on state-of-the-art multi-core architectures it is a requirement
to transform a sequential algorithm into a parallel algorithm, where parts of the algorithm
run concurrently. This is done by discovering which parts of the original algorithm can
be executed concurrently and modifying them so that they can be run simultaneously on
multiple processor cores. This is usually done by using threads. In an ideal case this
approach can increase the throughput linearly by the number of used processor cores.

Common properties of parallel algorithms

Each thread has two data types, which are required for executing a parallel algorithm:
private and shared data. Information for a generic algorithm can be usually divided into

3



2. Fundamentals and related work

input data, result or output data and state data, which stores the current progress in the
algorithm execution. In combination both types contain the information required for the
execution of the algorithm. Private data is information which is specific to a single thread
and is not shared with other threads. Input data is usually read-only and distributed as
private or shared read-only data to threads. Normal shared data on the other hand is, as its
name implies, shared with other threads and used to communicate with other threads. The
communication process is carried out by reading and writing the shared data from several
threads.

A major distinguishing property of shared data in comparison to private data is that shared
data can be read and modified simultaneously by different threads, as it is shared between
simultaneously running threads. It is important to ensure a correct computation process by
coordinating the access and modification of shared data in a responsible way. If this is not
ensured situations could occur, where the output of an computation is dependent on the
timing of other computations, and not on the flow of data, as originally intended by the
programmer. These situations are called race conditions and generally lead to undesired
non-deterministic results. They are caused when critical sections are not properly handled.
A critical section is a part of an algorithm, that accesses and possibly modifies shared data
that must not be concurrently accessed by more than one thread. This problem was first
identified by Dijkstra in "Solution of a problem in concurrent programming control" [4].

Locks

A common approach to prevent race conditions is to use locks. Locks are a synchronization
mechanism to restrict the access to shared resources. Locks can be used for all sorts of
resources, like devices or in memory/on disk data. Before accessing a shared resource
the associated lock has to be acquired, i.e. it is ensured that no other thread has currently
locked it and the current thread is the only thread being in the process of acquiring the
specific lock. After successfully acquiring the lock the requesting thread can continue
accessing and modifying the data. Afterwards the thread releases access to the shared
resource by unlocking the previously acquired lock and continues the computation process.
A concurrent thread, which also wishes to access the same shared data which another
thread has currently locked, runs through the same lock acquire process and is prevented
from accessing the shared data. The access prevention is usually done by either running
continuously in a loop until the access to the shared resource is possible again (spin-lock)
or by blocking further computations, giving processor control back to the operating system
or another thread and waiting for a signal to continue computation later on when access to
the shared resource is free to acquire again.

But traditional programming of parallel applications using locks is complex and error-
prone, as shown in "Is transactional programming actually easier?" by Rossbach et al. [1]
and "A study of transactional memory vs. locks in practice" by Pankratius et al. [2].
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2.1. Introduction to concurrent programming

A short excursion about why it is complex and error-prone: The use of locks can easily
lead to undesirable situations like dead locks, where two threads need to acquire access to a
resource the respectively other thread has already access to. As a result both threads can not
progress further and the computation process involving these threads comes to a halt. This
problem can be solved, as suggested by Dijkstra in [4], by ordering the shared resources
and establishing a rule that all resources have to be acquired in this particular order. This
commonly used approach has some limitations: Firstly it’s application is limited, as the
number of locks has to be known during design time and it also has to be fixed value.
Secondly it is a complex procedure and therefore has difficult to implement correctly. This
example shows that using locks forces to choose a trade-off between flexibility, complexity,
scalability and performance.

Using locks also adds complexity to the design and implementation steps of programming
concurrent applications. For instance during design a decision has to be made whether to
use coarse- or fine-granular locks, or even a mixture of both. Coarse-granular locks protect
complex compounded data structures as a whole, where as fine-grained locks protect the
individual data fields, of which the data structure is composed. Coarse-grained locks
reduce the number of locks needed and therefore reduces design complexity. However it
also does increase contention, i.e. the frequency of acquiring a specific lock, and therefore
decreases scalability and performance. Fine-grained locks on the other hand can be used
to protect disjoint data fields in a data structure and allow threads to simultaneously access
and modify these unrelated data sets. This approach reduces contention and provides better
scalability, but it also increases the number of locks and thus the design complexity.

As a short summary it is safe to say that the complexity of an application directly correlates
to the level of difficulty to correctly implement this application. Also to ensure that a
complex parallel system works correct is inherently difficult due to its concurrency. To
increase this difficulty by adding even more complexity (locks, correct use of locks) is
certainly not an easy and promising approach.

Read-copy update

Special parallel algorithms working on shared data without employing traditional synchro-
nization mechanism, so called lock-less or non-blocking algorithms [5], can be used in
special corner cases. One of the most widely used algorithms of this type is read-copy
update (RCU), as described by McKenney in "Structured deferral: synchronization via
procrastination" [6] and Desnoyers et al. in "User-Level Implementations of Read-Copy
Update" [7]. It is used in the network stack and memory management subsystem of newer
versions of the Linux operating system kernel. RCU is used to protect very low contented
mainly read shared data in linked lists by creating a separate copy ("new version") of
a data structures whenever a modifying thread tries to make changes to the contents of
the data structure. Simultaneously running threads reading from the same data structure
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2. Fundamentals and related work

("old version") are therefore not affected by the modification and can continue unhindered.
When the updating thread has finished its work the new version is put in place in the linked
list by modifying the pointer from the previous node to the following node. The pointer
originally pointed to the old version and after updating now points to the new version. This
works correctly as RCU makes use of the fact that writes to aligned pointers are atomic in
modern processor architectures. The now old version of the data structure is finally freed
after all reading threads have finished access to it. This approach allows threads to read
and modify shared data simultaneously without blocking any reader thread.

Transactional Memory

As seen in the previous paragraphs about locks it is hard for programmers to design and im-
plement applications using locks correctly. A programming paradigm should therefore be
easy to use for programmers, have a good scalability and deliver high performance. Trans-
actional Memory, as proposed by Herlihy et al. in "Transactional memory: architectural
support for lock-free data structures" [8], is a new paradigm trying to fulfill these promises.
It tries to keep the additional complexity added by programming parallel applications low
by providing enhanced semantics for data access. A central advantage of Transactional
Memory is that the programmer specifies what should be done with shared data, rather
than having him to specify exactly how the problem of concurrent access to shared data is
handled. This approach relieves a programmer from the previously mentioned problem of
trade-off selection and increased application complexity.

Transactional Memory introduces the concept of atomic blocks. These blocks guarantee
atomicity, isolation and consistency. Changes on shared data are done at the end of an
atomic block in an all-or-nothing fashion through implicit commit or abort operations
(atomicity). A specific instance of execution of a atomic block is called a transaction.
It is ensured that each atomic block has “seen” a consistent set of shared data during
its lifetime (consistency) and is not allowed to modify the data of another concurrently
running atomic block (isolation). Data read or written by an transaction is recorded in a
read and write-set. A special handling procedure is invoked if these conditions are violated,
e.g. an atomic block has operated on inconsistent data or it has modified data shared with
another concurrently running atomic block. The procedure usually undoes the changes
made by the atomic block and restarts the execution of the atomic block. This conflict
detection treatment is transparent for the algorithm executing in the atomic block and is
called an abort. The occurrence of aborts is expected during normal system operations. In
contrast an commit is done when an atomic block finishes running without violating its
conditions. Transactional Memory is an optimistic approach to parallel programming, as
atomic blocks theoretically modifying the same shared data can be executed in parallel,
in contrast to a implementation using locks. The atomicity, consistency and isolation
guarantees needed for a correct application execution must be handled only if the atomic
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2.1. Introduction to concurrent programming

blocks actually do modify the same data. This is usually done by aborting all except one
of the conflicting atomic blocks and committing the remaining one.

The Transactional Memory semantics (atomic blocks) are usually provided by Trans-
actional Memory framework libraries interfacing with an application. The framework
libraries are independent from the algorithms employed in an application. This eases
the implementation and testing of these libraries. It also allows applications requiring
Transactional Memory semantics to rely on well-proven libraries.

Using Transactional Memory in applications

Traditional Locking
lock lock_a, lock_b;
[...]
lock(lock_a);
lock(lock_b);
a->cnt = b->cnt;
b->cnt++;
unlock(lock_a);
unlock(lock_b);

Transactional Memory

atomic {
a->cnt = b->cnt;
b->cnt++;

}

Table 2.1.: Comparison of traditional locking and Transactional Memory

Table 2.1 shows a comparison between implementing a critical section using locks and
Transactional Memory. The shown program manipulates two objects. The implementa-
tion using locks has to handle several lock variables whereas the Transactional Memory
implementation is very concise. The application programmer using locks has to handle
an increased application complexity when compared to programming using Transactional
Memory, as he has to use the locks in the right way (e.g. locking in a consistent order),
because otherwise a deadlock can occur.

Software-, Hardware- and Hybrid Transactional Memory

Transactional Memory framework libraries can be implemented completely in software.
This type of Transactional Memory is therefore called Software Transactional Memory
(STM). In this case the employed algorithms for providing Transactional Memory seman-
tics for an application are written to run using standard general-purpose processors.

Transactional Memory semantics can also be provided by hardware, usually done by
extending the processor instruction set architecture (ISA). Special instructions are used
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2. Fundamentals and related work

to indicate the begin and end of atomic blocks to the processor. Conflict detection and
transactional reads and writes are done directly in hardware. Only a thin software layer is
needed for better usability by an application. This type of a Transactional Memory system
is called Hardware Transactional Memory (HTM). The execution speed of Transactional
Memory applications is usually increased by this type of system when compared to an
implemention solely in software (STM). Unbounded Hardware Transactional Memory
systems allow the execution of arbitrary transactions, where as bounded Hardware Trans-
actional Memory systems impose certain restrictions on the characteristics of transactions.
They can have capacity contraints, e.g. the hardware can handle only transactions with a
certain maximum read and write set size, or capability constraints, e.g. transactions can not
call I/O operations. Transactions which are not supported by hardware therefore cannot
successfully run in Hardware Transactional Memory mode and must be handled by other
means.

Software Transactional Memory has the advantage of a flexible execution of transactions,
where as Hardware Transactional Memory executes transactions faster. The advantages of
both Software- and Hardware Transactional Memory can be utilized together by combining
Software- and Hardware Transactional Memory. Such a system type is called Hybrid
Transactional Memory.

Figure 2.1.: Software-, Hardware- and Hybrid Transactional Memory

Figure 2.1 summarizes the dependency between the different types of Transactional
Memory systems. Software- and (Pure) Hardware Transactional Memory systems can work
standalone, where as a Hybrid Transactional Memory system depends on a implementation
of both Software- and Hardware Transactional Memory.

2.2. Related work

This section summarizes current state-of-the-art research in Transactional Memory and
related areas.
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Transactional Memory on General Purpose Central Processing Units

Transactional Memory applications can be executed either either through Software or
Hardware Transactional Memory support. There are generally two feasible approaches
for Hardware Transactional Memory support: A light-weight approach adds special in-
structions to the processor ISA for a more efficient execution of Software Transactional
Memory systems. This approach can be summarized as Hardware-assisted Transactional
Memory. A more intrusive approach, in terms of structural changes to the processor design,
adds new execution units and memory dedicated to Transactional Memory support directly
to the processor core and consequently uses more hardware resources (Transistors, Logic
routing, etc.). The main advantage of the second approach is to allow the fast execution
of some Transactional Memory transactions (Hardware Transactional Memory mode) by
providing Transactional Memory semantics directly in hardware.

Several proposals have been published for Transactional Memory support in next-generation
processor architectures: AMD proposes the "Advanced Synchronization Facility" (see
"ASF: AMD64 Extension for Lock-Free Data Structures and Transactional Memory" [9]
by Chung et al.), an AMD64 hardware extension for lock-free data structures and Trans-
actional Memory. Cache lines can be locked using specific instructions to facilitate the
running of a fast ASF-STM system. An evaluation by Christie et al. in "Evaluation
of AMD’s advanced synchronization facility within a complete transactional memory
stack" [10] observed that ASF-based Transactional Memory systems show very good
scalability and much better performance than purely Software Transactional Memory
based systems for the applications in the STAMP benchmark suite [11].

Intel’s design "Hardware assisted Software Transactional Memory" (HASTM) (see "Ar-
chitectural Support for Software Transactional Memory" [12] by Saha et al.) also takes
the same approach by proposing changes in the processor ISA to speed up the execution
of Software Transactional Memory runtime systems. This light-weight approach allows
for a relatively non intrusive implementation in current processor cores, but also limits the
possible acceleration.

The Transactional Memory implementation in Sun’s Rock processor, as described by
Dice. et al. in "Early experience with a commercial hardware transactional memory
implementation" [13], takes on a hybrid approach by implementing the parts, which allow
to accelerate the common case behavior of Transactional Memory applications, in hardware
while at the same time supporting advanced Transactional Memory features in software.
The design of this Transactional Memory implementation allows to take advantage of
future processor architecture generations, where on each iteration a successively higher
level of Hardware Transactional Memory support can be achieved.

The TMbox system, as presented by Sonmez et al. in "TMbox: A Flexible and Recon-
figurable 16-Core Hybrid Transactional Memory System" [14], follows a different, more
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heavy-weight approach. Entire transactions can be executed directly in hardware in a best-
effort way. This means that certain restrictions of transactional characteristics (like size
of read-/write-set, no I/O operations) have to be satisfied to allow a successful execution.
The advantages are fast execution and, on the software side, decreased complexity because
a Software Transactional Memory runtime is not necessarily needed. The design of the
TMbox system is used as the underlying platform in this diploma thesis.

Some of these proposed changes are currently being implemented in commercially avail-
able processors, as published by Jacobi et al. "Transactional Memory Architecture and
Implementation for IBM System Z" [15] for IBM System Z and by Wang et al. in "Evalua-
tion of Blue Gene/Q hardware support for transactional memories" [16] for Blue Gene/Q.
The ongoing research on Transactional Memory by nearly all major microprocessor com-
panys indicates a certain possibility of seeing it in more future CPU architectures.

The Transactional Synchronization Extensions, as implemented by Intel in the current
state-of-the-art Haswell processor family1, supports a concept similar to Transactional
Memory called Hardware Lock Elision [17]. Lock elision allows a thread to elide the
acquisition of a lock by optimistically assuming that no other thread will use the lock.
If later on the assumption proves to be wrong the thread is restarted at the lock-eliding
instruction and a normal sequence of locking and unlocking takes place. Another ISA
extension implemented by Intel called Restricted Transactional Memory looks similar to a
stripped down subset of Hardware Transactional Memory, but a lot of care must be taken to
get good performance out of this new technique, as shown by Wang et al. in "Opportunities
and pitfalls of multi-core scaling using hardware transaction memory" [18].

Transactional Memory on Graphic Processing Units

An increasingly interesting new runtime environment for computation-intensive appli-
cations are state-of-the-art graphic processing units (GPUs) through the use of General
Purpose Computation on Graphics Processing Unit (GPGPU) techniques. These GPUs use
SIMD and massively multi-threaded execution to provide a high raw computing power.
Recent non-graphic oriented programming APIs like OpenCL, DirectCompute and CUDA
allow an adaption of applications to the special requirements of GPUs. But the conversion
of applications using shared data to the specific features and requirements of an GPU
is difficult: Barrier synchronization does slow down the system a lot, while the use of
fine-grained locks is very difficult to implement correctly for more than 10,000 scheduled
hardware threads.

Fung et al. address these issues in "Hardware Transactional Memory for GPU Architec-
tures" [19] by proposing and simulating a GPU with Hardware Transactional Memory

1Intel: Architecture Instruction Set Extensions Programming Reference, pages 506 ff.,
http://download-software.intel.com/sites/default/files/m/3/2/1/0/b/41417-319433-012.pdf
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support. They show that Hardware Transactional Memory on GPUs performs well for
applications with low contention. Their proposed Transactional Memory design "KILO
Transactional Memory" captures 59 % of the performance of an GPGPU programmed with
fine-grained lockings and has an estimated hardware overhead of about 0.5 %.

Cederman et al. show a related feasibility study in "Towards a Software Transactional
Memory for Graphics Processors" [20]: They use the unmodified hardware of a Nvidia
GPU to run two variants of a Software Transactional Memory runtime environment. One
variant is a simple, easy to implement Software Transactional Memory with low resource
requirements, specifically designed for use in GPUs. The other Software Transactional
Memory variant uses a more complex design oriented for general purpose multiprocessors.
The results show increased performance and reduced abort rates when using the complex
design.

The cooperation of CPU and GPU oriented Transactional Memory runtime environments
remains an developing area: Future GPU architectures are going to acquire some high-
level semantics from standard CPU architectures like virtual memory support and memory
protection.

In a new development AMD currently brings system designs both based on a new shared
memory architecture for CPUs and GPUs (hUMA2) and a standard for tight integration of
heterogeneous processors (HSA3) into the consumer market. The hardware units called
Accelerated Processing Units (APU) are going to be delivered in PCs and upcoming video
game consoles (PlayStation 4 and Xbox One). This high-volume influx of ubiquitous
heterogeneous multi-cores will surely be an attractive field of application for Transactional
Memory research.

Characterization of Transactional Memory applications

All of these previously mentioned proposals show different environments for running
Hardware Transactional Memory and Software Transactional Memory applications. To
get a high computing performance it is essential to characterize Transactional Memory
application behavior and adjust the internal parameters and algorithms of a Transactional
Memory runtime environment accordingly. Multiple papers have been published about
the characterization of Software Transactional Memory applications. Ansari et al. ported
some applications from the STAMP benchmark suite to DSTM2, a Java-based Software
Transactional Memory implementation with profiling features. The results are published
in "Profiling Transactional Memory Applications" [21]. They used some well-known

2AMD Heterogeneous Uniform Memory Access,
http://www.amd.com/us/products/technologies/hsa/Pages/hsa.aspx#3

3AMD Heterogeneous Systems Architecture,
http://www.amd.com/us/products/technologies/hsa/Pages/hsa.aspx#2
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metrics like speed up, wasted work and time in transaction to characterize the behavior
of these applications. Some of the presented metrics can also be used as input for the
decision making process, as proposed in this diploma thesis. Chung et al. present a
comprehensive characterization study of the common case behavior of 35 multi-threaded
applications in "The Common Case Transactional Behavior of Multithreaded Programs"
[22]. The applications mostly originate from computational sciences and use a wide range
of programming languages. Tracing markers were added to the applications and a trace
with all executed instructions and tracing markers was collected for each application.
The results show an interesting insight into the common case behavior of real world
applications not directly designed for Transactional Memory. The Software Transactional
Memory monitoring techniques and the metrics presented in these papers are, in general,
transferable to other Transactional Memory variants, but the specific implementation of a
monitoring infrastructure is different on Hardware Transactional Memory systems. One
specific different aspect is the difference in processing speed of a Transactional Memory
application running on a system with enabled or disabled monitoring. The processing
speed of Transactional Memory applications running on a Software Transactional Memory
runtime environment with enabled monitoring support is always slowed down due to
the increased amount of computations done by the Transactional Memory system (e.g.
generation and saving of traces). Monitoring support for an Hardware Transactional
Memory system can, on the other hand, be implemented with low overhead, as shown in
an related work by the author in [23].

The PhD thesis of Ferad Zyulkyarov "Programming, Debugging, Profiling and Optimizing
Transactional Memory Programs" [24] does include an extensive introduction to various
Transactional Memory runtime design patterns, functionalities and optimization opportuni-
ties. Topics also include debugging, profiling and optimization techniques. The profiling
framework is based on the Bartok-STM system, an ahead-of-time C# compiler with Trans-
actional Memory support. The aim of the developed techniques were to combine profiling
work with the already existing C# garbage collector. The garbage collector runs at dynamic
and non-deterministic time points during the application runtime. Application threads
must be synchronized at these points. This behavior, inherent to managed programming
languages with a garbage collector, changes the applications transactional behavior and
characteristics when compared to an implementation in an unmanaged language with
static memory management. The dynamic behavior also makes accurate monitoring and
optimization harder. The Transactional Memory tracing techniques in the PhD thesis are
therefore integrated into the garbage collector to allow a parallel execution of memory
management and tracing algorithms and to prevent further transactional behavior changes.
This helps to reduce the probe effect (i.e. the change of application behavior when enabling
or disabling the generation of traces).

The monitoring techniques used in this diploma thesis are in some parts comparable to the
Transactional Application Profiling Environment, as presented by Chafi et al. in "TAPE: A
transactional application profiling environment" [25]. The TAPE system was simulated
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using an execution-driven simulator, where as the system proposed in this thesis can both
be simulated by software using a Hardware Description Language simulator and run in
hardware (with a much higher speed) using an FPGA chip.

The transactional behavior of the application is gathered during runtime using an enhanced
version of a low overhead profiling framework covering both Software and Hardware
Transactional Memory modes, as originally described by Arcas and the author et al. in "A
low-overhead profiling and visualization framework for Hybrid Transactional Memory"
[23] and in the study thesis by the author "Enhancing an HTM system with Hardware
monitoring capabilities" [26].

Adaptive systems

Current research by Payer et al. in "Performance evaluation of adaptivity in software trans-
actional memory" [27] shows the benefits of having adaptivity in Software Transactional
Memory runtime environments. Compared to the current state of the art this diploma thesis
enhances the scope by running on a Hybrid Transactional Memory system, additionally
accounting for both changing Software and Hardware Transactional Memory behavior.

Lev et al. describe a Hybrid Transactional Memory system in "PhTM: Phased Trans-
actional Memory" [28], which analyzes the effectiveness of the Hardware Transactional
Memory unit during runtime and falls back to a permanent software mode if it detects
decreased performance through using the hardware unit. Their system was tested using a
simulator and, in comparison to the adaptive system propose in this diploma thesis, does
not adapt the strategies and settings of the Software Transactional Memory system.

Felber et al. describe dynamic tuning for the TinySTM Software Transactional Memory
library in "Dynamic Performance Tuning of Word-Based Software Transactional Memory"
[29]. They describe a dynamic adaption of various tuning parameters that affect the
transactional throughput. The three described parameters are:

1. The hash function to map a memory location to a lock. TinySTM right-shifts the
address and computes the rest modulo the size of the lock array. The number of
right shifts allows controlling how many contiguous addresses will be mapped to the
same lock. This parameter allows exploiting the spatial locality of the data structures
used by an application.

2. The number of entries in the lock array. A smaller value will map more addresses
to the same lock and, in turn, decrease the size of read sets. It can also increase the
abort rate due to false sharing.

3. The size of the array used for hierarchical locking. A higher value will increase
the number of atomic operations but reduce the validation overhead and potential
contention on the arrays elements.
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They use a hill climbing algorithm to randomly change one parameter at a time and
measure the resulting throughput over a period of time. If the throughput increases the
parameter is varied in the same direction at the start of the next period. When encountering
decreased throughput the algorithm chooses a previously seen best configuration as a new
base and restarts from there by choosing a new parameter to vary. This algorithm works
unlike the adaption process presented in this diploma thesis without previously obtained
knowledge on the exact effect of the adapted parameters on transactional throughput. The
algorithm by Felber et al. works, on the other hand, only with applications having static
unchanging transactional characteristics, as it provides no facility of detecting a major
change in transactional characteristics and, in response, restarting the adaption process
from scratch. These facilities are proposed in the design of the adaption process in this
diploma thesis.

Other related work

Gottschlich et al. present a transactional memory profiler in "Visualizing Transactional
Memory" [30]. They base their profiler on three visualization principles. The principles are
the precise graphical representation of transaction interactions including cross-correlated
information and source code, visualized soft real-time playback of concurrently executing
transactions and dynamic visualizations of multiple executions. They note "[...] that a TM
profiler should be primarily visual, as graphical representation is the best way to convey
complex interactions that unfold over time". The presented visualization post-processing
steps of the event-based tracing framework for Hybrid Transactional Memory, as proposed
in this diploma thesis, follow similar principles, but are based on prior work by the author,
as published in [23, 26], preceding the publication of Gottschlich et al.

2.3. Novel ideas

The following novel ideas distinguish the work done in this diploma thesis from previous
research:

• This thesis proposes a systematic approach for enabling the dynamic adaption of
strategies and settings in a Hybrid Transactional Memory system. This approach
detects and exploits program phases and improves the performance of Transactional
Memory applications. The phase detection and switching algorithms are designed in
a modular way providing high flexibility and exchangeability.

• An event-based tracing framework suitable for dynamically selecting appropriate
Transactional Memory strategies during runtime depending on the current program
phase is presented. Hardware units are used to ensure zero overhead when tracing
transactions using Hardware Transactional Memory and a one cycle overhead per
state change when tracing transactions using Software Transactional Memory.

14



3. TMbox: A Hybrid Transactional
Memory System

The TMbox system, designed at the Barcelona Supercomputing Center (BSC), is used as
the base implementation of a Hybrid Transactional Memory system for this thesis. It is an
multiprocessor system on chip design and implementation built to explore trade-offs in
multicore design space and to evaluate parallel programming methods like Transactional
Memory. The system uses ring buses to connect a configurable number of MIPS R3000-
compatible soft-core processors. The interconnect is based on a 2-way ring bus with an
unidirectional data lane in each direction. This interconnect design offers the space and
the flexibility to add, synthesize and determine the impact of new hardware components
on application performance.

The following chapter provides an introduction to the TMbox design and summarizes key
characteristics. Additional information about the TMbox design is available in "TMbox:
A Flexible and Reconfigurable 16-Core Hybrid Transactional Memory System" [14] by
Sonmez et al. and "Resource-bounded multicore emulation using Beefarm" [31] by Arcas
et al.
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3.1. System schematics

Figure 3.1.: 8 Core TMbox system block diagram

Figure 3.1 shows a high-level overview of the TMbox hardware components. The black
ring bus transfers memory read/write requests and responses while the red ring bus transfers
invalidation and event messages. The invalidation messages are used to coordinate cache
and memory coherency between the participating processor cores.

The following paragraphs describe the units which were re-used from the TMbox system.

Bus Node

The bus node unit connects the processor core, L1 unit, TM unit and log unit to two
ring buses. One ring bus transmits memory related messages, whereas the other ring bus
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transmits invalidations and (added in this study thesis) events created by the monitoring
infrastructure.

TM Unit

The Transactional Memory unit is necessary for supporting Hardware Transactional Mem-
ory. It contains the read- and write-set of the currently running transaction. Some Transac-
tional Memory related parameters like read-/write-set size can be changed before synthe-
sizing the system.

Bus Controller Unit

The bus controller unit forwards memory related messages received via the ring bus to the
DDR controller for further processing. It also receives requested memory data from the
DDR controller and sends it via the ring bus to the requesting core unit.

Core Unit

The processor core and associated units comprise a core unit. Every neighbouring core
units is connected by the two ring buses. The first and the last core unit is connected to the
bus controller unit. The number of core units in the TMbox system is variable.

3.2. Transactional Memory design and
implementation characteristics

The following section reviews the design and characteristics of the software and hardware
components of the TMbox system, which are involved when running Transactional Memory
applications on the system. The properties of these components have a major influence
on the achievable level of adaptivity and it is therefore important to accurately assess
the impact of these properties on the general performance of Transactional Memory
applications. This section discusses the impact of the component design on a design-level,
where as section 6.1 determines the impact in an experimental way by proposing the use
of a Transactional Memory benchmark application.

As introduced previously the support of Transactional Memory semantics can be provided
via software, hardware or a combination of both. The following sections consequently
describe all three options:
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Software Transactional Memory (TinySTM)

The software, which provides Software Transactional Memory semantics for the TM-
box system, is called TinySTM. It is an efficient word-based Software Transactional
Memory implementation developed at the Universities of Dresden and Neuchâtel. The
general design principles of TinySTM are shown by Felber et al. in "Time-Based Software
Transactional Memory" [32].

Transactional Memory granularity

The granularity of Transactional Memory implementations can be either object- or word-
granular. In the high grained case of object granularity a previously defined arbitrary object
is accessed and modified in its entirety in a transactional and therefore atomic way. This
means that each change to a field within the object marks the whole object as changed and
prevents other threads from simultaneously making concurrent modifications to any field
of the same object. This approach works fine in an application where fields, which are
often modified concurrently, are densely packed in different objects. This ensures a low
level of contention on these objects. The underlying approach has been published firstly
by C.A.R. Hoare in "Monitors: an operating system structuring concept" [33].

The other case of low grained Transactional Memory granularity detects changes to fields
of an object or a structure (in non OOP languages) on a word based granularity. This
means that threads can successfully concurrently change fields of an object if the accessed
fields are mutually exclusive.

Many data structures exhibit this behavior of changes to mutually exclusive internal fields
when doing operations on different elements of the same data structure. For example
when looking at a standard double-linked list a concurrent change of the left hand node
and a change of the right hand node both modify fields of the same (middle) node, but
both can also be run simultaneously when having word based granularity, which is not
possible when having object granularity. For the sake of optimization the strict word based
granularity is often weakened by combining multiple successive words into a region with
an atomic behavior.

Transactional Memory snapshots

The set of fields read by a transaction is its read set and similarly the set of fields it writes
is its write set. Invisible reads is a strategy, where reads of a transaction are tracked in
its read-set, but not visible to other transactions. This improves the performance of a
Transactional Memory environment, but special care has to be taken to prevent the reading
of inconsistent data by concurrent transactions.
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The TinySTM implementation uses a time-based approach called Lazy Snapshot Algorithm
(LSA) to construct snapshots of the fields accessed by a transaction. The snapshot remains
consistent throughout the whole lifetime of the transaction. The consistency is verified
by checking the validity interval for snapshots and comparing them to the modification
time stamp of accessed fields. The modification time stamp of a field is changed on each
modification of the value of a corresponding field and is obtained from a time base, which
is globally accessed by all threads. As shown in [32] this allows to efficiently verify the
consistency of snapshots on each object access.

Transactional Memory strategies

Commonly used Transactional Memory related strategies can be grouped by when they do
conflict detection and how to handle memory updates caused by transactional progress:
Lazy and early conflict detection and buffered and non-buffered transactional updates.

TinySTM implements three different combinations of conflict detection and data versioning
strategies, called designs: Write-back using commit-time locking (WB-CTL), write-back
using encounter-time locking (WB-ETL) and write-through using encounter-time locking
(WT).

Strategies using lazy conflict detection (also known as commit-time locking) defer the
detection of conflicts between transactions to the end of a transaction. This implies that
in this mode transactions always execute until a commit is requested (unless they are
forcefully aborted from outside, for instance by a contention manager). The Transactional
Memory implementation then checks at commit time if a conflict has happened during
the transaction runtime and then responds by either committing a transaction in the case
of no conflict or aborts the transaction when a conflict has happened. This type of lazy
conflict detection keeps transactional overhead low, as a possible lengthy conflict detection
algorithm has to be run only once in the entire transaction lifetime. A disadvantage of this
setting is that the wasted work done by an aborted transaction is higher than when using
early conflict detection, because the transaction always finishes doing work and then either
commits or aborts, increasing the amount of wasted work and the time it takes to undo
it.

Early conflict detection (also known as encounter-time locking) checks for conflicts during
transaction lifetime, usually multiple times before a transaction requests a commit. A
conflict is detected earlier than when using lazy conflict detection and therefore causes a
faster abort-restart cycle. The amount of wasted work is decreased, as the transaction is
aborted directly when a conflict is encountered and further useless work in the transaction,
which would always be discarded as the result of the conflict, is prevented.

The data versioning strategies write-back and write-through differ in the way changes to
data are written to memory. The updated data is stored in a redo log and written to memory
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Name Conflict detection Update buffering Amount of aborts Wasted work
in aborted Tx

WB-CTL Lazy Yes Low High
WB-ETL Early Yes High Low

WT Early No High Low

Table 3.1.: Summary of Transactional Memory strategies

upon commit when using write-back. With write-through updates are written directly to
memory and the previous data values are stored in an undo log. The original data values
are restored to memory in the case of an abort. Write-back has a lower abort overhead,
as in the abort case no data must be written back to memory. Write-through has on the
other hand a lower commit-time overhead, as data is directly written to memory during the
runtime of a transaction. The commit phase is fast as no changed data has to be written to
memory in this step.

The control and data flow when using these three commonly used designs are shown in
the appendix in figures A.1 (Write-back using commit-time locking), A.2 (Write-back
using encounter-time locking) and A.3 (Write-through using encounter-time locking). The
control flow is denoted by solid lines in the figures, whereas data flow is denoted by dashed
lines. Nodes representing actions related to transactional memory are drawn in a lighter
color.

In general, we can say that both lazy conflict detection and non-buffered transactional
updates are optimistic methods, which optimize for the case of a successful transaction
commit. These methods are especially applicable when an application exhibits high
parallelism and a small rate of conflicts. Early conflict detection and buffered transactional
updates are, on the other hand, ideal for pessimistic cases, where a high rate of aborts slows
down transactional progress. Applying these methods keeps the transactional overhead low
when having a high level of contention. The characteristics of the three different strategies
are summarized shortly in Table 3.1.

Hardware Transactional Memory (BeeTM)

TMbox supports Hardware Transactional Memory through the addition of special instruc-
tions to the processor ISA. These instructions indicate a transaction start or commit to the
Transactional Memory hardware unit, which is located in each processor. The software
using this type of Transactional Memory transactions has to use special read and write
instructions. These instructions automatically update the read and write set and check for
conflicts during the runtime of a transaction. The read and write set of a transaction is
stored in dedicated hardware memory units, directly located in the Transactional Memory

20



3.2. Transactional Memory design and implementation characteristics

hardware unit. A transaction in Hardware Transactional Memory mode is aborted either
implicit, whenever the Transactional Memory hardware unit detects a conflict with another
concurrently running transaction, or explicit by executing an abort instruction. The strat-
egy used by the Transactional Memory hardware unit is write-back with encounter-time
locking.

A thin software layer called BeeTM allows to execute transactions in pure Hardware
Transactional Memory mode. No Software Transactional Memory implementation is
needed is this case. Another mode of operation is Hybrid Transactional Memory. This
mode combines Software and Hardware Transactional Memory and is explained in the
following paragraphs.

Hybrid Transactional Memory (HyTM)

A Hybrid Transactional Memory runtime, which provides Transactional Memory semantics
to applications by utilizing both software and hardware components, has been designed and
implemented in the scope of the VELOX project [34]. The VELOX Hybrid Transaction
Memory implementation is based on an old version of TinySTM. The old version has,
in its unmodified VELOX variant, the restriction that one Transactional Memory design
has to be picked at compile time. The picked design can not be exchanged later on
during runtime. This prevents the dynamic adaption of Transactional Memory strategies
depending on application behavior during runtime, which is a major goal of this thesis. A
proof-of-concept modification of TinySTM, which removed this constraint, was developed
at the beginning of this diploma thesis and the preliminary results were presented at the
Euro-TM Workshop on Transactional Memory (WTM 2013) in Prague, Czech Republic.
A newer version of TinySTM was released during approximately the same time frame.
The code base of TinySTM had been majorly refactored and simplified in this new version,
also removing the one design restriction. The released version had unfortunately no
support for Hardware Transactional Memory and as a consequence no support for Hybrid
Transactional Memory and was therefore not applicable for further research in the scope
of this diploma thesis.

To be able to continue research a plan was made to tackle this problem: The Hardware
and Hybrid Transactional Memory mode enabling changes, which were applied to the old
VELOX TinySTM version, were identified, extracted and cleanly ported forward to the
newest TinySTM version, changing and adapting the implementation whenever necessary.
The resulting merged version was adopted as the base for further experimentation.
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Summary of characteristics

A clear determination of the correlation between design and influence on Transactional
Memory performance is often difficult to make beforehand when looking only at the design
of a Transactional Memory system. The design of the involved components is often a
result of a trade-off between different design choices. A different approach is to implement
the chosen design and then evaluate the influence of the design choices on Transactional
Memory performance in an experimental way. Such an approach is shown later on in
section 6.1.
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This chapter contains the design of an adaptive process, which is the foundation for
optimizing the performance of Transactional Memory applications by exploiting program
phases, as shown later on in chapter 6. Accompanying hardware units are also presented in
this chapter.

4.1. Design goals

The Transactional Memory subsystem in a computing system contains several settings
affecting the performance and scalability of Transactional Memory applications, as shown
in the previous chapters 2 and 3. The goal of this diploma thesis is to improve the
performance of Transactional Memory applications by automatically adapting the settings
of the Transactional Memory subsystem. An adaptive system, in general, contains an
adaptive process, which continuously monitors the behavior of the underlying system,
summarizes the current behavior in metrics, processes them using a particular algorithm
and reacts by changing parameters of the underlying system in response.

The execution and data flow of such an adaptive process is shown in Figure 4.1. The
adaption algorithm works on an input data set, in this case the system metrics, and outputs
another set of data, a new set of settings for the Transactional Memory subsystem. Section
4.3 of this chapter describes the metrics available in a Hybrid Transactional Memory
system and which settings are suitable for dynamic adaption during runtime.

Some Transactional Memory applications exhibit phased execution, i.e. their behavior
during runtime can be decomposed into phases (segments) with a different transactional
behavior. This means that the transactional behavior of such an applications is not static
and changes during runtime. The transactional behavior of such a phase is characterized
by several metrics, which are described in section 4.3. Section 4.2 proposes a novel design
for an adaptive process on an Hybrid Transactional Memory system, which reacts to this
phased behavior and automatically optimizes the settings of the Transctional Memory
subsystem in response.

Furthermore a design is proposed for an event-based tracing framework implemented in
hardware, which allows a low overhead tracing of Transactional Memory applications

23



4. Design

Figure 4.1.: An adaptive process

with a small probe effect. The probe effect describes the fact that tracing an application
changes the behavior, performance and scalability of the application when compared to an
execution run of the application without tracing. To get a high quality insight into system
behavior it is therefore fundamentally important to have a tracing process with a low probe
effect. The tracing framework provides the necessary metrics for the adaptive process.

The design of both the proposed adaptive process and the tracing framework are agnostic of
the design and implementation of the underlying Hybrid Transactional Memory system.

4.2. Providing adaptivity for a Hybrid Transactional
Memory system

Current state of the art Hybrid Transactional Memory systems have a large number of
strategies and settings and most of them influence the performance of Transactional Mem-
ory applications, as shown in section "Characteristics of the TMbox Hybrid Transactional
Memory implementation" (3.2). Before running an application an programmer has to
specify the to be used strategies and the value of the settings. It is very difficult to decide a
set of strategies and settings before hand without further insight into the behavior of the
application. Furthermore, some Transactional Memory applications exhibit a phased be-
havior, where the characteristics of the transactions changes during runtime. Transactions
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can be characterized by the rate of conflicts they cause, the transaction runtime, the size of
the read and write set, if they can be effectively executed using the Hardware Transactional
Memory unit etc. The periods of time with stable transactional characteristics are called
program phases. Even if a optimal set of strategies and settings for the first program phase
is picked at the start of the application it can lead to decreased performance in program
phases with a differing transaction behavior. Selecting the settings statically at compile
time before executing the application therefore comes with the disadvantage, that the
settings may not suit all program phases. As a consequence, a phased behavior of the
application leads to suboptimal or even poor performance.

This section describes a decision making process, which detects program phases and
responds to phase changes by adapting the Transactional Memory settings. This is the
foundation of how the performance of Transactional Memory applications can be improved
by matching program phases to appropriately picked sets of Transactional Memory settings
and strategies.

Three main stages have been identified for the decision making process. The stages are
described in the following paragraphs and also visualized in the corresponding figures 4.2
and 4.3.

• Stage 1 - Determine when to switch.

A decision making unit continuously evaluates received Transaction Memory metrics
and interprets them using a given phase detection algorithm. The metrics are com-
puted from the events received from the Transactional Memory tracing framework.
The Transactional Memory statistics hardware unit sums up each event type and
provides a history of previous tracing periods. The phase detection algorithm uses
this information to try to detect when a program phase with one set of characteristics
ends and another program phase starts.

The process proceeds to stage 2 every time a phase change is detected.

• Stage 2 - Determine set of new settings and strategies.

Decide which settings to switch and to which values. This process is called decision
making and is done by a switching algorithm. The switching algorithm maps an set
of Transactional Memory strategies and settings to each occurring program phase.
Simple algorithms pick a set of Transactional Memory settings and strategies by
looking at the current value of metrics. More advanced algorithms can maintain a
history of previously seen application phases and decide based on this broader data
base. The overhead of switching between sets of settings also has to be kept in mind.

• Stage 3 - Switch to new set of settings.

A new set of Transactional Memory settings and corresponding strategies has been
picked by the switching algorithm. This new set can now be activated on a global
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Figure 4.2.: Transactional Memory decision making process

(system-level) or on a local (per-core) scale. This addresses the issue that sometimes
threads running at the same time differ in Transactional Memory behavior when
compared to each other (locally different behavior) when at other times all threads
in the system change behavior (globally different behavior).

This stage has 2 cases, a complex and a simpler one, as shown in Figure 4.3. The
chosen path depends on which settings should be changed:

Case 1: A switch of some settings requires an idle system, from a Transactional
Memory point of view. For example an increase of the number of locks in
the TinySTM lock array requires a shutdown and a subsequent restart of the
TinySTM runtime. The switch of these parameters is accomplished by using
the quiescent support of the TinySTM runtime, which ensures that at a future

26



4.3. Design Space for an adaptive Hybrid Transactional Memory system

Figure 4.3.: Switching process in processor cores

point in time no processor runs transactions by blocking the activation of
new transactions. A blocked switching signal is sent to all processor core,
application activity is halted in response, the Transactional Memory runtime is
restarted with changed settings and the application is unblocked.

Case 2: Most of the settings and strategies can be changed on-the-fly during
normal Transactional Memory activity. The changes are usually picked up by
the application threads when starting a new transaction. There is no need to
block and unblock transactional activity.

The whole process is, in both cases, transparent and non-disruptive from an applica-
tion point of view.

4.3. Design Space for an adaptive Hybrid
Transactional Memory system

The following paragraphs detail the options that are available when designing and imple-
menting the phase detection and switching algorithms. To keep this project in the scope of

27



4. Design

a diploma thesis a subset of the options presented here have been picked and implemented,
as shown later in chapters 5 and 6. The other non-implemented options may be researched
in the future as further work.

Suitable metrics for the phase detection algorithm

The following paragraph describes metrics, which can be computed by utilizing an ap-
propriate implementation of the tracing framework. These metrics are then available as a
source for the decision making process.

Metrics: Contention, transaction length, transaction size, Hardware Transactional Memory
effectiveness, switching overhead.

The contention level is calculated as the ratio between the number of aborts and commits.
Transaction length as a portion of time can be calculated as the time between a start of a
transaction and the end of it through either a commit or an abort. The size of a transaction is
the number of entries in its read and write set. There is a correlation with the effectiveness
of the Hardware Transactional Memory unit, as on a bounded Hardware Transactional
Memory implementations transactions exceeding a certain predetermined transaction size
cannot execute using the hardware unit and must be executed solely in software using
a Software Transactional Memory library. The switching overhead is the delay caused
by deciding which settings to switch and afterwards actually switching between different
sets of strategies. The switching overhead is an interesting metric, as it can vary when
employing complex phase detection and switching algorithms which exhibit a variable
runtime.

As the underlying Transactional Memory system supports both Software- and Hardware
Transactional Memory the switching decision can be based not only on the usual metrics
like contention, transaction length and transaction size but on a broader base also on some
additional ones like the effectiveness of the Hardware Transactional Memory unit.

Types of phase detection and switching algorithms

The phase detection algorithm can run on a per-core (local) or system (global) level. The
system level view is generated by aggregating the detected behavior of each processor core.
When deciding on a system level view all settings are set globally at the same time for all
processor cores. The other case of deciding on a per-core level allows to set the settings
on a fine-grained per-core level, selecting an optimal set of strategies for each core. To
ease the implementation settings can also be switched on a global level. When some cores
exhibit a different or diverging behavior (program phase) than other cores either a majority
or consensus decision has to be made. A majority decision switches to a set of strategies
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that is optimal for the majority of cores, where as a consensus decision type algorithm
does not switch in the diverging case and instead switches later on when all cores exhibit
the same program phase again.

Strategy selection

Software Transactional Memory libraries support several optimistic and pessimistic sets of
data versioning and conflict detection strategies. Optimistic strategies are more suitable
than pessimistic strategies for low contention program phases and vice versa for high
contention program phases. The strategies write-through and commit time locking are
optimistic, where as write-back and encounter time locking are pessimistic strategies.

In a Hybrid Transactional Memory system transactions are usually started utilizing the
Hardware Transactional Memory unit. The transactions are marked as running in hardware
mode. A transaction has to fall back to execution by a Software Transactional Memory
library if it exceeds the capabilities of the Hardware Transactional Memory unit. The
transaction is then marked as running in software mode. This fall back can also be
requested voluntarily, for example when transactions abort repeatedly in hardware mode.
The Hardware Transactional Memory unit can handle aborting a transaction in fewer ways
than when handling the aborting of an transaction running in software mode.

4.4. Application tracing

A goal of this diploma thesis is to improve Transactional Memory performance by adapting
Transactional Memory parameters dynamically during runtime based on the detection of
application phases. To achieve this goal application behavior has to be traced constantly
during runtime and fed to a decision making process, which then interprets the traced
information and adapts the parameters based on the gained insights.

To get a suitable overview of Transactional Memory behavior it is vital to have a tracing
system with ideally no impact on application runtime characteristics and application
behavior. The tracing data gathered could otherwise be influenced in some sort and cause a
misguided optimization attempt. For Hardware Transactional Memory systems a separate
hardware monitor is therefore the method of choice to non-intrusively gather and preserve
run time information.

This section describes an event-based tracing framework, which later on is used to gain
information for a decision making process. A ring bus interconnect is especially suited for
the transmission of the generated events to a central unit evaluating the events. But the
described design can also fundamentally be applied to other types of interconnect, like a
switched bus network with dedicated lines between connected nodes.
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Design of event-based tracing

Both Software and Hardware Transactional Memory behavior is split into a stream of small
events containing information about Transactional Memory state changes. The events
are later used as is for input into a central event processing unit. This processing unit
contains a decision making process, which decides how to do an dynamic adaption to
changing application behavior. The events can also be later on recomposed into states to
enable the visualization of application behavior. This design allows to run the monitoring
infrastructure with low transfer bandwidth needs. Data concerning events is transported
as low-priority traffic: The data is sent on the system interconnect only during phases
where the bus is not transferring high-priority data. This procedure therefore does not
influence the application behavior and its runtime characteristics. An alternative would be
to collect and send the complete Transactional Memory state each time it changes. This
approach needs more bandwidth than the chosen approach, as on each state change all data
describing the state must be transferred on the interconnect.

Event format

Figure 4.4.: Format of an event

Figure 4.4 shows the format of an event. The data in the message header contains metadata
about the event: The message type field is used to distinguish tracing events from other
data being transmitted on the system interconnect. This allows to transfer the tracing events
with a lower priority than the other data. The system interconnect can thus be shared with
other communications without creating a probe effect. The sender ID is used to determine
the processor number, on which a particular event happened.

The timestamp, i.e. the time when an event occurred, is delta-encoded. This means only the
difference between consecutive event timestamps is saved. This space efficient encoding
allows to determine the moment an event occurred with an accuracy of 1 cycle. A temporal
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distance of more than one million cycles between two events occurring on one processor
does on the other hand lead to an overflow of the timestamp field. An exemplary system
with a clock frequency of 50 MHz would therefore have a timestamp overflow every
20 milliseconds. Not handling this overflow would cause the “real” event time (during
application runtime) and the reconstructed event time after post-processing to diverge. A
timestamp overflow is however an unusual case: Events are created during normal system
operation with reasonable Transactional Memory activity with a much higher frequency
than required by this technical limitation. An easy solution to rule out timestamp overflows
is to add the generation of a special no-operation event, whenever a timestamp overflow
would have normally occurred. This special event can be ignored later on by the central
event processing unit.

The event type field stores which event occurred. Up to 16 different event types can be
defined, allowing an easy and flexible addition of new event types whenever necessary.

The event data field stores additional data concerning a given event, for instance the cause
of an abort of a transaction. Aborts can be caused either by a software request (software
induced), by exceeding a hardware constraint (capacity abort) or in most cases by detecting
a conflict with a committing transaction.

Event types

The event types defined for Transactional Memory transactions are:

Name Description

Start Transaction in software, hardware or hybrid mode has started.

Commit Transaction was successfully committed.

Abort Transaction was aborted. The cause is stored in the event.

Overflow A timestamp overflow occurred.

Table 4.1.: Event types for software, hardware and hybrid mode

The following event types are used only for transactions executing in hardware or hybrid
mode, as they can occur only in states related to Hardware Transactional Memory:

The generation and capturing of these event types allows to rebuild all Transactional
Memory states during post-processing. Additionally subsets of events can be selected
later during analysis, allowing a focus on specific types of transactions (for example only
committed transactions).
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Name Description

Invalidation A write has occurred to a memory location. This event is used for
the detection of transactional conflicts by the Hardware Transactional
Memory unit.

Try Lock Try locking the system interconnect for commit: A transaction has
finished computing. The Hardware Transactional Memory subsystem
tries to prepare the commit phase by exclusively locking the system
interconnect.

Lock Success Succeeded locking system interconnect: Lock was acquired, transac-
tional data is being stored into main memory.

Table 4.2.: Event types for hardware and hybrid mode

Generated event stream

Figure 4.5.: Monitoring infrastructure event stream

The generated event stream can be easily transferred, processed and saved. Figure 4.5
shows a short example of such an event stream.

Every row shows one specific event. The value 3 in column “INV” indicates a stream of
events. The “ADDR” column contains encoded values of the four columns to the right.
The “ID” columns contains the number of the processor core which generated the event.
The “DATA” column contains additional information about the event. The last column
“TIMESTAMP” contains the delta-encoded event time (i.e. the difference between the time
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during the generation of an event and the time of the previously generated event on the
same processor core).

The event stream is fed into the statistics unit for further processing. It can also be sent to
a Host PC for further visualization and analysis, as shown later on in chapter 6.

4.5. Tracing units

The following paragraphs describe the design of the hardware units of the tracing frame-
work. As the design is language-agnostic, it can be implemented using an arbitrary
hardware description language, such as VHDL [35], Verilog and Bluespec System Ver-
ilog [36].

Event generation unit

The event generation unit is connected to the Hardware Transactional Memory unit and
monitors the state of it, generating events whenever the state changes. The generated
events cover all of the state changes occurring during runtime. They are augmented with
additional data that is useful later on for behavior analysis. This additional data includes
for instance the number of a processor core, which caused the abort of a transaction. This
type of event generation adds no additional overhead when enabling tracing, as it can be
implemented entirely in hardware units running in parallel to normal system operation.
The tracing of Hardware Transactional Memory is thus possible without any probe effect
on the proposed design.

Event generation can also be requested by issuing special instructions in software. This
hardware-assisted event generation is useful when tracing transactions running in Software
Transactional Memory mode. These transactions are processed entirely by software and do
not change the state of the Hardware Transactional Memory unit. Software Transactional
Memory state changes are traced by adding the event-emitting instructions to corresponding
functions in the Software Transactional Memory runtime library. This mode of operation
introduces a one cycle overhead for each state change, which is small when compared to
a software-only tracing framework (also see section 6.4 for further information on this
topic).

Log unit

The log unit captures and saves events sent by the event generation unit located in the
processor core. These events are timestamped and saved using delta encoding in memory
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blocks located in each core unit. The events are later transferred via the system interconnect
to a central event processing unit. The transfer is only done whenever the interconnect is
idle. This approach prevents a disturbance of application timing behavior (no probe effect).
A buffer is used to save the arriving events. The size of the buffer is dependent on the rate
of arriving events and the worst case bandwidth of the system interconnect available for
low-priority traffic.

Location of event generation and log unit

The location of the event generation and log unit influences the scope of the available
tracing data. The complexity of the necessary design changes needed for connecting these
units to the to be traced units also needs to be considered. Two possible locations have
been identified:

1. Tightly integrated into processor core

The internal processor state can be easily monitored by embedding the units directly
in the processor core. The biggest disadvantage is the necessity to make major
design changes in the processor core to connect the various processor core buses and
signals to the units.

2. Between processor core and interconnect

This method allows a great extensibility of the tracing framework by allowing access
to a broad amount of available traceable data. It is also still relatively easy to
non-intrusively connect the event generation and log unit to the rest of the system.

The second location has been chosen to ease a later implementation and still deliver a
broad amount of logging data. This also keeps the complexity of necessary changes to the
design of a underlying Transactional Memory system at a reasonable level.

Statistics unit

The statistics unit is the central event processing unit. It is directly attached to the system
interconnect and counts how many events occurred in a time period (i.e. a fixed time span).
The sampling period can be changed to increase or decrease the sampling frequency. It can
be changed by reconfiguring the statistic unit during runtime.

The decision process, which manages adaptivity on the proposed design and is introduced
shortly in section 4.2, has some specific requirements: It has to gather insight into the
system state at discrete points in time. These points in time correspond to the execution
phases of the phase detection algorithm. The advantage of the proposed event based tracing
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framework (high accuracy and low overhead) can be combined with the requirements of
the decision making process (provide insights into the system state at discrete points in
time) by counting the events created from the tracing framework and summarizing them
in a regular fashion (sampling). The data flow of the statistics unit is shown in the next
Figure 4.6.

Figure 4.6.: Data flow of statistics unit
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Chapter 4 showed the design of an adaptive process for a Hybrid Transactional Memory
system. This is the foundation for reaching the goal of this diploma thesis: Optimizing the
performance of Transactional Memory applications by exploiting program phases. The
following chapter details the implementation of the hardware and software units of the
proposed adaptive process, which was done during this diploma thesis. The section also
tells about the substantial porting efforts, which were required to run the system on an
FPGA board available at KIT. The core parts of the implementation (ring bus, processor
cores) are based on an initial implementation of the TMbox system for a different FPGA
board.

5.1. The BEE3 FPGA Board

Figure 5.1.: BEE3 board

The TMbox system was originally implemented for the BEE3 research platform. The
BEE3 (Berkeley Emulation Engine, version 3) is a multi-FPGA system with up to 64 GB of
DRAM, as described by Davis et. al. in "BEE3: Revitalizing Computer Architecture" [37].
It is equipped with Xilinx Virtex 5 Series FPGAs and built into a 2U high chassis. The
BEE3 board uses the fourth-largest FPGA available in the Xilinx Virtex 5 series: A
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LX155T FPGA contains 97,280 LUT-flipflop pairs, 212 36K-bit Block RAMs for a total
of 954 allocatable kilobytes of Onboard-RAM and allows up to 16 MIPS compatible
processor cores to be fitted in one FPGA chip. A picture of the components comprising
the BEE3 system can be seen in Figure 5.1. For simplicity reasons only one out of the
four FPGAs is used on the BEE3 board, all hardware components of the TMbox system
accordingly sit on one FPGA. The ring bus could be extended to the other FPGAs and
form a multi-FPGA many-core system with up to 64 processor cores.

5.2. The XUPv5 FPGA Board

The XUPv5 board mainly features a Xilinx Virtex 5 XC5VLX110T FPGA. Additionally
two Xilinx XCF32P Platform Flash PROMs are used for storing the synthesized system
and a 256 MByte DDR2 SO-DIMM RAM module is used as main memory.

The board communicates with a host PC using the Universal Asynchronous Receiver/Trans-
mitter (UART) unit in processor core 0, a series of pins on the XUPv5 board providing the
required connection for the signals and a custom built Low Voltage Transistor Transistor
Logic (LV-TTL) to Universal Serial Bus (USB) converter. Data is transferred in intermittent
packets of one byte. The UART receives and sends bytes of data from and to the processor
core sequentially by transmitting and receiving one bit at a time over the serial connection.
The serial connection consists of a TX signal for sending bits, a RX signal for receiving
bits and a GND signal for providing a common ground voltage level. The bit values 0 and
1 are transmitted and received by varying the voltage on the signals between 0 and 3.3
volts, respectively, as per LV-TTL specification. There is no need for a clock signal, as
the UART communicates asynchronously by starting each transmission with a start and
stop bit and each side of the connection uses a fixed pre-set symbol transmission rate (also
called baud rate). A symbol consists of the payload data, the data bits, and the auxiliary
start, stop and parity bits.

The LV-TTL to USB converter was previously used for connecting a mobile phone to a
PC. The proprietary connector was cut off and replaced by soldered on pin headers for
the UART signals. These UART signals are then connected to the board headers using
wires.

The XUPv5 board can be plugged into a PC using the on board PCI-Express connection
as an alternative to the much slower UART interface. The PCI-Express connection is
currently inactive, as there are no hardware units handling the FPGA-side of the connection
on the board. Developing PCI-Express software units for the FPGA is outside the scope of
this diploma thesis. Further work may use the PCI-Express connection to transfer events
from the Transactional Memory tracing framework to the PC for further analysis and
visualization.
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5.3. Implementation of the proposed design

The design for an adaptive Hybrid Transactional Memory system, which is proposed in
chapter 4, was implemented in the scope of this diploma thesis. This section describes
the implementation of the hardware units, which were written in the hardware description
language VHDL.

Event-based Transactional Memory tracing framework

Figure 5.2.: 8 Core TMbox system block diagram (with event-based tracing framework)

The design of the proposed event-based Transactional Memory tracing framework was
implemented during this diploma thesis. The implementation is based on a previous
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implementation by the author, which is described in [26]. Figure 5.2 shows the tracing
hardware units in yellow color.

The log unit buffers events, if other higher priority traffic is detected on the ring bus. This
approach prevents a probe effect through by tracing, as the generated events do not preempt
traffic on the ring bus initiated by an application. Experiments did show that a buffer size
of 32 entries for the log unit is large enough to prevent a buffer overflow and a following
loss of events during application runtime. A specially designed assembler program, which
produces a very high rate of generated events, was used to determine the proper threshold
experimentally.

Hardware Transactional Memory tracing

The TMbox system uses a finite-state machine to manage the internal states of each
processor core. This finite-state machine contains the current state of the processor cache
and reacts to memory requests and answers coming from the ring bus. Figure 5.3 shows,
in a flow chart, a simplified image of this finite-state machine at the end of the chapter.
The full TMbox finite-state machine contains 11 states and 131 transitions. For simplicity
only the four states relevant to Transactional Memory operations are shown in Figure 5.3.
Tracing functionality for Hardware Transactional Memory was implemented by adding
event emitting codes to the finite-state machine. The event emitting code parts are marked
in red color. The event emitting code was implemented as unintrusive as possible, the
changes to the finite-state machine were in fact accomplished by adding about 30 lines of
VHDL code. This is a small change compared to the sum of lines of code in the main unit
of the processor (1533 lines). By embedding the event generation into hardware there is
no probe effect when enabling tracing for Hardware Transactional Memory.

Software Transactional Memory tracing

Special instructions have been added to the processor ISA to trace the execution of the
Software Transactional Memory library. These instructions, called xevent1 through xevent4,
allow to generate events, similar to the generation of events in the Hardware Transactional
Memory case. As a difference these events can instead be generated from software. The
TinySTM functions handling the start, abort and commit of transactions use the tracing
instructions to generate an event on each transactional state change. This approach allows
to enable the tracing of Software Transactional Memory with a overhead of one cycle per
transactional state change.
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Figure 5.3.: Processor core cache state finite-state machine with Hardware Transactional
Memory tracing extensions
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Statistics unit

The statistics unit counts the events generated by the tracing framework and summarizes
them periodically. The events are counted with an counter array, where every event type
is connected to one counter. Each counter is 32-bit wide. A counter is incremented by
one whenever an event of the corresponding type arrives. A counter field consists of a
counter array for each processor core. This allows to analyze the incoming events on a
local (per-processor) or a global (system) level. The global system level view is built by
adding the counter values of all processors. This is done for each event type.

The runtime of the system is divided into uniform periods of time. Each period has the
length (in cycles) of the sampling period. The sampling period is configurable by writing
to the corresponding configuration register and initiating a reset of the statistics unit. The
events received from the tracing framework are summarized and stored for the current and
the previous period.

The counter values of previous periods are retained to enable the phase detection and
switching algorithm to analyze the behavior of previous periods of time.

Each group of counter fields is called a level: By default there are three levels of counter
fields available. The special level 0 contains the number of events for each event type
and processor that occurred after the last reset of the statistics unit. Level 1 contains the
number of events that occurred in the current sampling period whereas level 2 contains the
number of events that occurred in the previous sampling period. The counters in level 2
are frozen until the current sampling period ends. The value of the counters of the now
finished sampling period in level 1 are moved to level 2 at that time, replacing the values of
the now penultimate sampling period. The values of the level 1 counters are set to zero and
the new sampling period starts. The number of retained previous periods can be increased
by changing the number of levels before synthesis.

The statistics unit is memory-mapped at the top of the system memory (also see Figure A.5).
The unit is accessed by using standard memory read and write instructions. This allows an
easy access from the phase detection and switching algorithm. The memory-mapped area
is divided into two main regions: The first region contains configuration and debugging
registers, while the second region contains a counter arrays for each level. All registers
and counter arrays are read-only, unless noted otherwise. Figures 5.4 and 5.5 show how to
access the statistics unit counter arrays, configuration and debug registers from software.
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11 10 9 8 5 4 2 1 0

0x0FFFF + 1 Level Processor Counter 0 0

Level


00 Events since last reset
01 Events in current period
10 Events in previous period

Processor Select counter array for specified processor core

Counter



000 Number of transaction starts in hardware mode
001 Number of transaction commits in hardware mode
010 Number of transaction aborts in hardware mode
011 Number of transaction starts in software mode
100 Number of transaction commits in software mode
101 Number of transaction aborts in software mode

Figure 5.4.: Statistics unit counter selection

031

Signature 0x0FFFF000

Period 0x0FFFF004

Timestamp 0x0FFFF008

Number of Levels 0x0FFFF00C

Reset statistics [Write only] 0x0FFFF010

Length of sampling period [Read/Write] 0x0FFFF014

Signature Fixed signature, used for debug purposes

Period Current sampling period number, used to detect period changes

Timestamp Number of elapsed clock cycles in current period

Number of Levels Number of counter arrays, set during synthesis

Reset statistics A write to this register sets all counter values to zero

Length of sampling period Get and set the length of a sampling period (in clock cycles)

Figure 5.5.: Statistics unit configuration and debug registers
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5.4. Porting the TMbox system

The existing implementation of the TMbox system is tightly linked to the BEE3 [37] board.
As a consequence the implementation had to be ported to the XUPv54 board, which is
available at KIT.

The core parts of the initial implementation of TMbox, the ring bus and the processor cores,
was straight forward, as these units were written in a board-agnostic way. Porting the other
hardware units, which connect the core units to other hardware units outside the FPGA,
was a more complex task. The XUPv5 board has a different hardware setup than the BEE3
board. The RAM controller and the Host PC connection interface had to be replaced as
the original units were tied to specific hardware characteristics on the BEE3 board. The
PCI-Express interface, which acted as the interconnect between the initial implementation
of TMbox and a Host PC, had to be replaced with a serial interconnect.

Also additional hardware units had to be designed, implemented and tested specifically for
the new board. These new units are the infrastructure, reset management, clock generation,
clock domain crossing control, DDR2 RAM controller and top level units.

The bus controller unit, which manages the interface to the DDR2 RAM controller, was
completely rewritten, because the signals and timing differed highly from the original
microprocessor controlled main RAM controller used in the initial implementation of the
TMbox system for the BEE3 board.

The initial implementation of the TMbox system for the BEE3 board originally contained
a small microprocessor, used for calibration and control of the on board DDR2 RAM
chips. The program running on the microprocessor is designed specifically for the BEE3
platform and did not work on the XUPv5 board. The implementation for the XUPv5 board
uses a dedicated DDR2 RAM controller unit implemented in hardware in place of the
microprocessor.

Infrastructure unit

The infrastructure unit provides a basic hardware environment, on which the other hardware
units can depend on after hardware power on and during reset and normal system operation.
The unit performs the reset management, clock stabilization and generation and generally
connects the other hardware units.

4Xilinx University Program XUPV5-LX110T Development System
http://www.xilinx.com/univ/xupv5-lx110t.htm
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Reset management

Reset management is a delicate matter, as three separate reset signals in three different clock
domains have to be synchronized and released in a specific order. To further complicate
matters the reset signals assert each other in a given way.

The reset signals in order of priority are "PLL reset" (highest priority level), "infrastructure
stage 1 reset" and "infrastructure stage 2 reset" (lowest priority level). The PLL reset is
asserted during power on and released after the PLL clock is stable. Infrastructure stage
1 reset connects to the DDR2 RAM reset. The DDR2 RAM controller calibrates and
configures memory access and releases the reset signal afterwards. Infrastructure level 2
reset connects the reset signals of the remaining units, mainly the ring bus and processor
cores. Each signals has to assert whenever a reset signal of a higher priority level is being
asserted. The release process follows the same order: Reset signals of a higher priority
level are always released before the release of reset signals of a lower priority level occurs.
At power on all reset signals are asserted. The system releases the reset signal step by step
afterwards until all components are correctly initialized and are working nominal.

Clock Domain Crossing

As the DDR2 RAM controller and the rest of the system are part of different clock domains
the problem of clock domain crossing has to be considered. Signals and data buses
connected between the two clock domains have to be appropriately synchronized. For
example a signal which is asserted for one cycle and arrives from the partition with a
lower frequency also has to be asserted exactly one cycle on the other side of the partition
(the side with a higher frequency). This means that the number of clock cycles a signal
is asserted should be the same on both sides. As a consequence of the different clock
frequencies in both clock domains the time (in seconds) the signal is asserted is not the
same. Another problem occuring during clock domain crossing is that a signal arriving
from one clock domain can appear asynchronous on the other clock domain, which disturbs
the operation of synchronous logic circuits. Signals therefore have to be re-synchronized
using either a FIFO or another appropriate synchronization technique, as shown by Sharif
et al. in "Quantitative analysis of State-of-the-Art synchronizers: Clock domain crossing
perspective" [38].

Two dual-ported asynchronous FIFOs with different clocks for the read and write port are
used to accomplish synchronization. The reason for needing the FIFOs is two-fold: First
when memory data arrives from the DDR2 RAM controller it is received in two cycles at
the rate of two memory words (64 bit) per cycle with a frequency of 200 MHz. This data
is forwarded to the bus controller, which receives the data with the same width and a lower
frequency of 50 MHz. The clock domain crossing unit handles the resulting bandwidth
difference by buffering the incoming and sent data in FIFOs. The other case, where data
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is stored in main memory and therefore sent from the bus controller to the DDR2 RAM
controller, is handled accordingly by using a second set of FIFOs.

Clock generation

The shown system needs several periodic signals for the clocking of its logic. These
signals need to have particular properties. For instance they need to have a fixed and
stable frequency without drift and a fixed phase relative to a particular input clock. The
clock generation unit controls the generation of the system clocks. The unit works in
tight cooperation with the clock domain crossing unit, as the synthesized hardware units
of the system are partitioned in two distinct areas with a different main clock frequency
(clock domains). Signals crossing a partition have to be handled in a particular fashion, as
described later.

The XUPv5 board contains a 100 MHz crystal oscillator as a source for a stable ciruit logic
input clock. The signal is connected to an FPGA pin and forwarded using a dedicated
clock distribution network to the clock generation unit.

Clock generation in the system is done by using a phase-locked loop (PLL), which is
integrated directly in the FPGA hardware. A phase-locked loop is a control system that
generates one or several output signals whose phase is related to the phase of an input
signal. The circuit consists of a variable frequency oscillator and a phase detector. The
oscillator generates a periodic signal and the phase detector compares the phase of that
signal with the phase of the input periodic signal and adjusts the oscillator to keep the
phases matched. The phase-locked loop is used here to generate frequencies that have
a multiple of the input frequency or whose phase is shifted by a fixed degree. The PLL
is unstable directly after power on, the PLL generated clocks are therefore not usable
until the PLL has reached nominal operation parameters (PLL lock is acquired). The
reset management unit handles this case by switching between external and internal (PLL
generated clocks) on the fly. The remaining system is also not activated until the PLL is
locked.

DDR2 RAM controller

The DDR2 RAM controller block, which is provided by Xilinx, was also modified to
run on the XUPv5 board. The original Xilinx implementation uses a dedicated clock
generation unit to generate the various clocks needed for the DDR2 RAM controller. This
unit was combined with the system-level clock generation unit, which also provides clock
signals for the other units of the system.
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5.4. Porting the TMbox system

The DDR2 memory module used in the XUPv5 board is a dynamic random-access memory.
The generic DDR2 RAM controller implementation, which is provided by Xilinx, has been
modified to run on the XUPv5 board and handles memory refresh and access. Memory
access has to be done in a particular fashion and has to adhere to strict timing constraints,
which are pre-determined by the used memory module. The frequency of signal changes
is, for instance, limited to the range of 200 to 266 MHz for the memory module used
in the XUPv5 board. The timing of other control signals can also be varied only in a
small range. The memory controller is written in VHDL as a soft-core IP block and is
synthesized together with the rest of the system. The strict timing constraints imposed by
the DDR2 RAM controller are ensured by specifying mapping and routing constraints for
the synthesis, mapping and routing process. The DDR2 RAM controller has the tightest
timing constraints in the implementation, as the ring bus and the processor cores run at a
much lower frequency and can have a more relaxed timing.

The memory controller needs several clock signals, whose frequencies determine the speed
of memory access. These clocks are used for memory calibration and I/O and internal state
machine clocking.

The main clock frequency of the DDR2 RAM controller is directly fed as the input clock
to the memory module. The memory module frequency has to be at least 200 MHz.
The DDR2 RAM memory controller main clock frequency therefore also has to run at
least at the same frequency. This requirement of a higher memory controller frequency
actually decreases the latency of memory accesses when compared to a simpler system
implementation with an uniform frequency of 50 MHz: A memory access usually has a
latency of > 20 memory cycles. The latency in the current non-uniform split-frequency
implementation is lower, as the memory clocks run at a higher frequency than the processor
core. The latency, as seen by an application running on a processor core, is therefore only
a quarter when compared to a hypothetical uniform system where both the processor core
and memory clocks run with 50 MHz.

Bus Controller Unit

The bus controller unit, which sits in the ring bus right next to the first and last processor
core, manages memory access and bus lock arbitration (needed by Hardware Transactional
Memory). It also maps several auxiliary hardware components into the memory address
space. This makes it easy for programs running on the processor cores to access and con-
figure these components by reading and writing using normal memory access instructions
to specific areas in memory (memory-mapped hardware access). The components include
a loader block ram containing the boot loader, which initializes the software side of the
system and loads and controls the execution of an application program (see section 5.4).
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5. Implementation

Memory read and write requests are delivered to the bus controller via the ring bus
interconnect. The requests contain a command word, which differentiates between read
and write requests, and an address (32 bit, aligned to processor quad-word). These requests
must be executed in a special way, as the DDR2 memory can be accessed only using bursts
of several memory words per specification. One burst is 64 bit wide. The burst mode for
standard DDR2 memory may be set only to either four or eight word burst. The bursts must
be transmitted to and received from the DDR2 RAM controller in pairs of two memory
words by specification. For this project a burst of four words was chosen. A two word burst
mode, which would allow to directly split the incoming processor quad-word (128 bit) into
two bursts and execute them without additional control logic is unfortunately not available
for DDR2 memory. The bus controller therefore always has to access four words (two
processor quad-words), but receives and sends only two words (one processor quad-word).
The matter is further complicated as the addresses of the data words following the first
data word are wrapped at the burst boundary. This is handled by aligning the incoming
memory address to a burst boundary (two processor quad-words).

Boot Loader

The DDR2 main memory of the system is in an uninitialized state after power up. This
means that the memory contains entirely random data and therefore has to be prepared for
use by an application by the boot loader.

The boot loader software is located in Block RAMs, which are directly connected to the
bus controller. To keep resource utilization low a decision has been made to fit the code,
data and stack of the boot loader into a memory area of 8 KB. This was achieved by
carefully creating a stripped down program written in MIPS assembler and C using no
standard library functions. Library functions could not be used, as it would be otherwise
not possible to fit the code, data and stack areas of the boot loader into 8 KB of RAM.
The boot loader does general hardware initialization, memory function checks, loads an
application program to main memory, checks for correct transmission and as the last action
starts and transfers control to the previously loaded application.

The Block RAMs used for storing the boot loader are placed to fixed locations on the
FPGA to allow the use of the data2mem program, provided by Xilinx. The data2mem
program5 is used to store the compiled boot loader directly into the right location in the bit
file created after the synthesis, map, place and route steps. When hardware units or, in this
special case, the pre-set content of BRAMs is changed the normal process is to go through
the usual synthesis, map, place and route steps to create a bitfile suitable for configuration

5Xilinx: Data2MEM User Guide
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/data2mem.pdf
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5.5. Running an application

of the FPGA. As these steps usually take a long time due to their elaborate processing6,
even when doing only small changes to hardware units or the boot loader, there was a need
for a faster approach. Using data2mem allows to replace and debug the boot loader easily
in a time efficient manner, by skipping the lengthy synthesis, map, place and route steps
and directly replacing the content of the Block RAMs in the otherwise unchanged bitfile.
This saves much time when debugging the boot loader and initial startup process of the
software parts of the system, as the turn around time for testing a new software version is
much lower.

Endianess / Byte order

Data has to be handled specially when transferring it between the Host PC and the system,
as the endianess of common x86 systems (Little-Endian/LE) differs from the endianess of
the MIPS cores used in this implementation (Big-Endian/BE). Endianess affects the order,
in which values sized larged than a byte are stored bytewise in memory. In BE mode the
most significant byte (MSB) is stored at a lower memory address than the least significant
byte (LSB), which is stored at the largest address. The storage order is reversed in LE
mode.

Boot Loader Image

The application image contains a cyclic redundancy check (CRC) value, which is used for
the detection of spurious transmission errors on the serial connection. The CRC value is
calculated by applying the standard CRC32 generator polynom G(x) = x32 + x26 + x23 +
x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x+ 1 to the application memory
dump area of the image, excluding the header fields. The header field is excluded, as the
CRC field in the header field can not be used as part of the input data area for the CRC
algorithm. The start of an improperly transmitted application is detected and prevented by
the boot loader. The boot loader restarts the loading process whenever a transmission error
is detected.

5.5. Running an application

General purpose computer systems usually run an operating system, which manages
hardware resources, provides protection by preventing simultaneously running application
from interfering with each other and, in general, provides a basic environment with
common, usually standardized services like memory management and communication

6see Bacon et al.: "FPGA programming for the masses" [39]
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Figure 5.6.: Boot loader image specification

techniques. Application, which run in this environment, hence do not have to be concerned
about the concrete implementation of these common services. Since there is no full
operating system running on the system standard core system libraries like the GNU
C Library (glibc), which provides a standardized interface (syscalls) between operating
system services and application, can not be used, as these libraries assume the existence
of a full-featured operating system. A set of system libraries called BeelibC are therefore
included in the software implementation of the TMbox system. These provide general
purpose, memory allocation, I/O and string handling functions. The libraries were enhanced
by adding a library, which allows an easy access to the Transactional Memory statistics
hardware unit from software.

A MIPS cross-compiler using GCC 4.3.2 compiles applications into object code. The
linker included in Binutils 2.19 later on links the application code statically with the system
libraries.

The following text details the steps required to run an application:

1. On the first step an application program is compiled using the gcc MIPS cross
compiler to an standard ELF executable file.

2. On the second step the file is converted to a plain memory dump by reading the ELF
header sections and writing the code and data sections at the appropriate offsets in a
raw file.

3. The resulting file can then either be run on the system or simulated using the Xilinx
ISIM VHDL Simulator.
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5.5. Running an application

a) When running in hardware the application is transferred into DDR2 main
memory using the boot loader and an UART connection.

b) For simulation the memory dump file has to be converted one more time into
a format suitable for loading into the Xilinx ISIM VHDL Simulator. Using a
cycle-accurate simulation the hardware units can be debugged more easily and
a faster code-compile turn-around cycle time can also be attained by avoiding
the lengthy synthesis, map, place and route steps required to get an bitfile for
uploading to the FPGA. These steps usually take a long time in the order of
tens of minutes and can reach up to several hours when synthesizing a system
with the maximum number of cores enabled. A disadvantage of simulation
is the very slow execution speed of the system. When compared to a run in
hardware the simulation is much slower.

The Host PC is connected to the implemented system using a standard USB to LV-TTL
(3.3 V) UART converter running at a symbol rate of 115.200 baud. The UART connection
is also used for application control.

51





6. Results

6.1. Assessing the influence of transaction
characteristics

The Transactional Memory strategies, which are implemented in TMbox, differ in char-
acteristics, as shown previously in Section 3.2. This indicates a difference in behavior
and performance in different application phases. This section explores the influence of
different Transactional Memory strategies on the general performance of a Transactional
Memory application.

General approach

The influence of different Transactional Memory strategies on the performance of a
Transactional Memory application has been determined by using the tm-bank application.
The application is based on a demonstration application found in the TinySTM distribution
with a similar mode of operation, but fewer adjustable application settings. The tm-bank
application also models the operation of a bank, where money is transferred between
different accounts.

As a first step two random accounts are chosen from the set of all available accounts.
These are designated the sending account (i.e. the account to be debited) and the receiving
account. A sum of virtual money is afterwards transferred from the sending to the receiving
account in two related work parts: The account balance of the sending account is retrieved
from the central register of account balances, decreased by the amount of money transferred
and stored back into the register. The same process is also done for the receiving account,
with the difference of increasing the account balance of the receiving account by the
amount of money transferred.

These two work parts must be executed atomically, as otherwise there exists the possibility
of a race condition, where the account balances of the involved accounts are set to wrong
values by executing the work parts in an interleaved fashion or reading and writing the
account values of the same accounts by concurrently running threads.
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6. Results

To avoid these problems the process of sending the money from one account to another
is enclosed in a Transactional Memory transaction. It is ensured that the money sending
process is executed in the required all-or-nothing atomically fashion. To increase the
length of a transaction multiple sending-receiving processes can be combined into the
same transaction.

The tm-bank application can be used to simulate transaction phases with differing char-
acteristics. The various settings available allow to parametrize the application in many
interesting ways by creating sets of settings (scenarios) and then checking the influence of
these scenarios on application performance when using different Transactional Memory
conflict detection strategies.

Setting: Number of Accounts (Memory Access Density)

The number of accounts influences the density of memory read- and write-accesses. A
smaller number of accounts means that the accesses to the register of account balances,
which is modified by each transaction, is clustered in a more compact way. Another
consequence is a rise in contention, as the possibility of a concurrent access to a given
account rises significantly when decreasing the number of accounts. An increase in the
number of accounts decreases the density of memory accessed on the other hand, as the
accounts involved in a transaction are spread over a larger memory range. The possibility
of a concurrent access decreases with a rise of the available memory range. The possibility
of a conflict between threads also decreases and concurrent threads can run better in a
parallel fashion as the level of contention decreases.

Setting: Maximum Transaction Length (Transaction Length)

The bank application used in this thesis has been extended by introducing a setting "Max
Length", which indicates the number of transfers a transaction can fulfill at most. The exact
number of transfers per transaction is determined randomly using a uniform distribution
between 1 and "Max Length" during runtime at the begin of each transfer transaction. This
means that "Max Length" corresponds to the expected number of transfers done during
a transaction and therefore directly relates to the length of a transaction. The length of a
transaction can therefore be varied by changing the "Max Length" setting.

Application Runtime

The runtime given is determined by executing a fixed number of transactions per thread.
The runtime is determined ten times per parameter set and afterwards averaged using the
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6.1. Assessing the influence of transaction characteristics

arithmetic mean. This accounts for the slightly fluctuating runtime, which occurs due to
the non-deterministic nature of the application even when having a fixed set of settings.

Runtime relative to best performing strategy

The runtime relative to the best performing strategy is calculated in the following way:

Let there be
rt1, rt2, rt3

the runtime rt of three different TM strategies for a given, fixed set of tm-bank settings,
respectively, as determined per experimentation. The runtime of the best performing
strategy is

rtbest = min(rt1, rt2, rt3).

In succession the runtime relative to the best performing strategy value rr can be calculated
for each strategy by

rrx =
rtx
rtbest

∀x ∈ (1, 2, 3).

A rr value of 1.0 marks the best performing strategy for a given set of settings, where as
values greater than 1.0 indicate an algorithm performing worse than the best performing
strategy. The value is linearly scaled, i.e. an algorithm with a runtime relative to the best
performing strategy of 2.0 has double the runtime when compared to the runtime of the
best performing strategy. Using this metric simplifies the performance comparison of
Transactional Memory strategies.

Relation of program phase, strategy and performance

Program phases can be classified into two types, a high and a low contention type. The
following experiment determines the performance of the tm-bank application for each
available Transactional Memory strategy. The performance for each strategy is tested
using two scenarios, each of which is modeled after the characteristics of a program phase
type.

The compared strategies are write-back using encounter time locking (WB-ETL), write-
back using commit-time locking (WB-CTL) and write-through using encounter time
locking (WT). The insight gained by determining the optimal strategy for each scenario
is used later on to parametrize the switching algorithm. The switching algorithm decides
which strategy to use during runtime. The decision is based on the detected program phase.
The assumption is that the optimal strategy for a high contention program phase, which is
detected when running another Transactional Memory application, is the same as that for
the high contention scenario and vice versa for the low contention phase type.
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Setting Value

Transfers 1000

Threads 4

Accounts 200

Max Length 8

Runs 10

High contention scenario

Setting Value

Transfers 1000

Threads 4

Accounts 800

Max Length 2

Runs 10

Low contention scenario

Table 6.1.: tm-bank application settings

The settings of the tm-bank for the two scenarios are shown in table 6.1. The settings
differ in the number of accounts and the maximum transaction length. A low number of
accounts and a high maximum transaction length yields high contention, where as a high
number of accounts combined with a low maximum transaction length results in a low
level of contention. All other Transactional Memory settings are set to fixed values and
remain unchanged. The high contention scenario exhibits a high rate of aborts and the low
contention scenario exhibits a low rate of aborts. The runtime of 10 runs is averaged using
the arithmetic mean for each combination of strategy and scenario.
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Figure 6.1.: Comparison of tm-bank performance

The experimental results obtained using the XUPv5 board are shown in figures 6.1 and 6.2.
They show that the different Transactional Memory strategies exhibit different performance
in the two scenarios. An interesting fact is that no single strategy has the best performance
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Figure 6.2.: Comparison of tm-bank performance (runtime normalized to best strategy)

for both scenario. There are two winner strategies: WB-CTL exhibits the best performance
in the low contention scenario, where as WB-ETL exhibits the best performance in the
high contention scenario. These findings mean that the WB-CTL strategy should be used
after detecting a low contention phase and correspondingly WB-ETL for a high contention
phase.

6.2. Multi-dimensional analysis

This section describes an experiment run on the XUPv5 board. The experiment generalizes
the results of the previous section where only two strongly differing scenarios were used.
The difference in this experiment is that various scenarios are constructed to model program
phases with an intermediate contention level compared to the experiment above.

As shown previously the memory access density and length of transactions can be modeled
by varying the number of accounts and the maximum transaction length in the tm-bank
application. A set of parameters is composed of a given value for the number of accounts
and maximum transaction length. The individual influence on the performance of the three
TM design can be determined by benchmarking the tm-bank application in the following
way:

A set of parameters is chosen by varying the number of accounts in the range between 200
accounts and 1000 accounts with a step size of 200 and varying the maximum transaction
length in the range of 2 transfers and 8 transfers with a step size of 2. The chosen bandwidth
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6. Results

of settings covers scenarios with low, medium and high levels of contention. An increase in
the number of accounts and a decrease of the maximum transaction length corresponds to
a lower level of contention and vice versa. All other Software and Hardware Transactional
Memory parameters are kept fixed in this experiment.

accounts = {200, 400, 600, 800, 1000}

max_tx_length = [2, 4, 6, 8]

A matrix of runtime values rt is obtained by running the tm-bank application with this
fixed set of parameters for each design:

rtWB−CTL = ∀x ∈ accounts ∀y ∈ max_tx_length tm-bank-wb-ctl(x, y)
rtWB−ETL = ∀x ∈ accounts ∀y ∈ max_tx_length tm-bank-wb-etl(x, y)

rtWT = ∀x ∈ accounts ∀y ∈ max_tx_length tm-bank-wt(x, y)

The runtime for each set of parameters is determined ten times and afterwards averaged
using the arithmetic mean. This accounts for the slightly fluctuating runtime, which occurs
due to the non-deterministic nature of the application even when having a fixed set of
settings.

A run for a given design strategy results in a set of data points and takes about 20 minutes
to execute on the XUPv5 FPGA board. The collected data points are normalized using
the algorithm described in Section 6.1 to allow an easy comparison between the three
designs.

A three-dimensional representation of the resulting sets of data points is normally a suitable
method of comparing the three design visually. The x- and y-axes represent the changing
tm-bank parameters and the z-axis represents the runtime for a given pair of parameters.
The plane in the figures is created by connecting each data point with its neighbors. The
shape of the surface of the plane represents the changing runtime behavior.

The runtime of the three designs can now be visually compared by combining the shapes of
the surfaces into one figure and letting them intersect, as shown in Figure 6.3. The bottom
most plane at each data point represents the fastest design for this set of parameters. As can
be seen there is no single best design for all sets of parameters. Furthermore it is difficult
to determine the best design in this 3D illustration, as the planes conceal each other.

Thus another more suitable visualization had to be found: The following figures 6.4 and
6.5 visualize and compare the runtime of the three Transactional Memory conflict detection
strategies by creating quadrilaterals7 spanning the area between the data points. The value
and therefore color of each quadrilaterals is derived by taking the four neighboring data
points in each corner of the quadrangle and calculating the mean sum of the values of

7A polygon with four edges and four corners.
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Figure 6.3.: Comparison of Transactional Memory strategies (Average runtime)

the data points. The data points are normalized according to the previously described
algorithm. The z-value of 1.00 denotes the best performing algorithm for a given set of
parameters, as denoted there. The data point in the top left corner represents the highest
contention level and the data point in the lower right corner stands for the lowest contention
level of the application. The data points in between are intermediate levels of contention.

The resulting grid is coarse, as seen in Figure 6.4. Decreasing the step size (i.e. the differ-
ence between parameters) results in a grid with a finer resolution, but also exponentially
increases the time for a run. It is thus not a feasible approach. A good estimation of a
run with smaller step sizes can be obtained by using linear interpolation between the data
points. In Figure 6.5 a 10 times interpolation was used to get a meaningful visualization.
The results show that WB-ETL is a good strategy in the high contention areas, where as
WB-CTL is good in the lower contention areas. The performance of WB-CTL is highly
dependent on the maximum transaction length. Lower transaction lengths favor the use
of the WB-CTL algorithm. WT has a good performance in some of the high contention
areas, but otherwise exhibits an inferior relative performance compared to the WB-ETL
strategy. The results support the findings of the previous section that WB-CTL should be
used for low contention program phases and WB-ETL correspondingly for high contention
program phases.
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Write-back using encounter-time locking (WB-ETL)
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Write-back using commit-time locking (WB-CTL)
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Write-through using encounter-time locking (WT)
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Figure 6.4.: Comparison of WB-ETL, WB-CTL and WT runtime
relative to best performing algorithm
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Write-back using encounter-time locking (WB-ETL)
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Write-back using commit-time locking (WB-CTL)
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Write-through using encounter-time locking (WT)
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Figure 6.5.: Comparison of WB-ETL, WB-CTL and WT runtime
relative to best performing algorithm (interpolation 10x)
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6.3. The case for visualization

One of the goals of this diploma thesis is to automatically optimize the performance
of Transactional Memory applications with a phased execution. It is thus essential to
select Transactional Memory application for optimization, which actually have a phased
execution. Visualizing the transactional behavior is a good technique to determine if the
Transactional Memory applications has phased execution or not. It helps to gain detailed
insight into the different program phases and is therefore an important and essential step in
the process of designing and implementing an adaptive system. This insight is used later
to parametrize the algorithms necessary for a dynamic optimization process exploiting
program phases in Transactional Memory applications. A short introduction to the used
visualization tool is shown in the following sections. How visualization can exactly be used
to gather knowledge is also showcased with several examples in the following sections.

6.4. Event-based tracing of many-core systems on
commodity hardware

The proposed event-based tracing framework is a data source suited for a visualization
tool, as it exhibits a low probe effect. Unfortunately no high-bandwidth interface was
available on the XUPv5 board. Such a high-bandwidth connection is necessary to transfer
the generated events without affecting normal system operations. A buffering of events in
main memory would be needed. This slows down the access to memory areas by a running
application, thus disturbing normal system operations and creating a large probe effect.
It was therefore rejected. Simulating the TMbox system in a VHDL simulator is another
possible approach. This approach was also rejected, as the simulation process is very
slow. Tracing the run of a normal Transactional Memory application would have taken
a long time. A viable approach in getting a suitable data source for the visualization of
Transactional Memory applications is to run a tracing framework on commodity hardware.
This tracing framework should exhibit a low overhead when enabling the tracing. Such
a suitable framework is described by Schindewolf et al. in "Capturing Transactional
Memory Application’s Behavior - The Prerequisite for Performance Analysis" [40]. A
set of post-processing tools, which enable the visualization of Software, Hardware and
Hybrid Transactional Memory applications, have been adapted to work with the data files
generated by this tracing framework. The post-processing and visualization tools can thus
work with both the tracing framework proposed by Schindewolf et al. and the tracing
framework proposed in this diploma thesis.

The tracing framework by Schindewolf et al. is similar to the event-based tracing framework
for Hybrid Transactional Memory in this diploma thesis. A major difference is that the
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6.5. Visualization of transactional behavior

former tracing framework solely uses software components to implement it’s tracing
features. It can thus run on commodity state-of-the-art general purpose processors without
Hardware Transactional Memory support.

Event tracing for multi-core systems without dedicated hardware units requires a high
level of storage bandwidth to store the possibly massive amount of events generated during
application runtime. The bandwidth needed can exceed a level of hundreds of megabytes
per second. This amount of bandwidth can be easily provided by writing to a RAM-based
volatile storage, but as a drawback the time of an application run is severely limited by the
amount of RAM dedicated to this storage. Non-volatile storage on hard disk drives (HDD)
and solid state drives (SSD) circumvents the drawback of a short application runtime
by providing huge amounts of available storage area. But HDDs do not provide enough
bandwidth for storing the event traces of a many-core system and SSD-based system are
very expensive.

As a solution to this problem the framework, as described in [40], is designed to handle
the high level of storage bandwidth needed by compressing the events on-the-fly during
runtime using multiple compression threads. The compression scheme employed is the
LZO real-time data compression library8. The LZO library is optimized to maximize
the compression throughput and minimize the time taken for compression, while still
providing an adequate compression ratio. In this design each application thread executing
transactions is associated with a group of compression threads, each of which takes a set of
generated events, compresses them and writes them in a non-linear order to a file system.
This approach reduces the bandwidth needed by a factor of approximately 29. It is usually
sufficient to have a mapping of one transaction thread to two or three compression threads
to achieve an acceptable level of overhead introduced through the use of this proposed
compression scheme.

Before visualization the compressed event trace has to be ordered in a linear way in the
first place, i.e. the sets of events are ordered in ascending order of generation time. The
compressed sets can then be decompressed and written in a linear fashion to non-volatile
storage. As this process runs after the to be profiled application has finished execution its
runtime is of no great importance.

6.5. Visualization of transactional behavior

Further post-processing is needed for the visualization of the transactional behavior of
an application. The input data for the following tools can be an event stream from
either the previously mentioned Software Transactional Memory tracing framework or an

8Oberhumer: LZO real-time data compression library
http://www.oberhumer.com/opensource/lzo/
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6. Results

event stream from the tracing framework, which is presented in this diploma thesis. The
event stream from the Software Transactional Memory tracing framework contains only
events related to Software Transactional Memory, where as the event stream from tracing
framework in this thesis can contain both Software and Hardware Transactional events.

After the supervised application has finished running, a post processing tool called "Bus-
EventConverter" [26] reads and checks the event stream, rebuilds Software, Hardware,
Hybrid Transactional Memory and application states, generates statistics and outputs data
suitable for later processing with an visualization and analysis tool, explained in the next
section. The post-processing tool can also used with an implementation of the low overhead
event-based tracing framework on another system on chip design.

The BusEventConverter post-processing tool

The event stream, which is generated by the tracing units, is not directly usable for
visualization and analysis. The post processing tool BusEventConverter generates data
usable for visualization and analysis. Multiple passes process the input data set step by
step. The passes are also called "generators", because a new set of data is emitted in each
pass. Each generator uses the input data set and the data generated by previous generator
passes, modifies it and generates a new data set for the next generator. Specific finite-state
machines (FSM) are used to regenerate the Transactional Memory states depending on
whether the event is associated with a transaction in Hardware- or Software Transactional
Memory mode. The following two figures 6.6 and 6.7 show these FSMs.
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Figure 6.6.: Mapping of Software Transactional Memory events

Figure 6.7.: Mapping of Hardware Transactional Memory events
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Paraver: A Transactional Memory visualization and analysis
program

Paraver9 is a visualization and analysis program, developed at the Barcelona Supercomput-
ing Center (BSC). It is normally used to analyze MPI and OpenMP programs running on
multi-processor and cluster systems. An example of such a cluster is “MareNostrum” 10,
one of the most powerful supercomputers in Europe, located at the BSC. Its excellent visu-
alization and data processing capabilities allowed to re-purpose it for Software, Hardware
and Hybrid Transactional Memory visualization and analysis in the scope of this diploma
thesis. The monitoring of long running applications, which run on many-core systems,
creates particularly large traces. Paraver is designed to handle these traces efficiently.
The user can freely zoom in and out of traces, displaying only interesting parts of the
visualization of a trace.

This section showcases two visual analysis examples, which show how insight is gained
about the characteristics of Transactional Memory program phases by using visual analy-
sis.

Paraver structure and features

The Paraver visualization and analysis workflow is shown in Figure 6.8.

Figure 6.8.: Paraver workflow (Figure derived from Paraver website)

The filter module selects a partial set of records from the trace file. This is useful for the
visualization and analysis of a part of the states and events, for instance to analyse only
aborted transactions.

9http://www.bsc.es/paraver
10http://www.bsc.es/plantillaA.php?cat_id=200
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6.5. Visualization of transactional behavior

The semantic module afterwards assigns a numeric value to each state and event. This can,
for instance, be used to compute a thread- or system-level overview.

The visualization, textual and analysis modules comprise the main parts of Paraver. They
are used for drawing the time line figures in the follow sections.

Paraver trace file

Post-processing the event stream with the BusEventConverter tool creates a Paraver trace
file, which is the prerequisite for visualization and analysis. A Paraver trace file contains a
header and a set of records. There are three record types defined:

• State: Record containing a state value of a thread and its duration. Paraver associates
no semantics to the encoding of the state field.

• Event: This record represents a punctual event that occurs during the execution of a
specific thread. It is encoded into type and value. Paraver associates no semantics to
the encoding of these fields.

• Communication: Record containing a pair of events and a causal relationship
between them.

A trace file contains the Paraver event definitions it’s first segment, while the second
segment contains the state definitions and the third segment (not shown) contains the
communication definitions. Each definition is associated with a processor core number and
contains a timestamp. A specification of the Paraver file format can be found in [26].

67



6. Results

Visual analysis example I - Hardware Transactional Memory usage

(a)

(b)

(c)

Figure 6.9.: Program trace (a) and corresponding rate of commits (b) and number of used
Hardware Transactional Memory units (c)

Interpretation: These traces show an application with a low amount of aborts. The time
scale of Figures (a) to (c) is the same.

Figure 6.9b shows the rate of commits: Various shades of green correspond to a high rate
of commits and a short duration of committing transactions. Blue shades indicate time
periods with a low rate of commits and a high duration of committing transactions.

Figure 6.9c has been created using the semantic analysis module of Paraver and shows the
number of actively used Hardware Transactional Memory Units on a system level scale
over time. During most of the runtime the application uses 2 to 4 Hardware Transactional
Memory units. Later after completion of the first thread the usage changes to between 1
and 3 used Hardware Transactional Memory units with an average of 2 used units. Threads
2 and 3 finish computation nearly at the same time. During the last phase of execution only
one Hardware Transactional Memory unit is actively used by the last thread.
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Visual analysis example II - Contention analysis

(a)

(b)

(c)

Figure 6.10.: Starvation of two threads: Program trace (a) and corresponding rates of
commits (b) and aborts (c)

Interpretation: This time a trace of an application with a high amount of aborts is shown.
Light blue parts in the timeline of Figure 6.10a correspond to wasted work, i.e. work done
in aborted transactions. The Figures 6.10b and 6.10c have been created using the filter
module of Paraver. These two Figures show a high rate of aborts (bright green parts) and a
low rate of commits (blue and yellow parts) on threads 2 and 4. Further analysis showed
that threads 1 and 3 were mainly causing a large amount of aborts in threads 2 and 4. The
negative effects of the dependencies between these two groups of threads should therefore
be optimized.
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6.6. Optimizing a Transactional Memory application
by exploiting program phases

The following sections show how an Transactional Memory application with program
phases can be successfully optimized by utilizing the adaptive process and the units from
the framework proposed and implemented in this diploma thesis.

Intruder: A benchmark for Transactional Memory

The Intruder application is a generally accepted benchmark for Transactional Memory
performance. It is part of the Stanford Transactional Applications for Multi-Processing
(STAMP) benchmark suite. The benchmark suite currently consists of eight transactional
memory applications implementing algorithms found in real-life applications. The Intruder
application, for example, implements network intrusion detection: Streams of incoming
data are received from a network and analyzed for particular attack patterns. The following
figures 6.11 and 6.12 show a visualization of the transactional behavior of the Intruder
program when running with 4 threads on commodity hardware. The used visualization
tool is Paraver.

Visually analyzing program phases

The green parts in Figure 6.11a are transactions which successfully commit, where as
the red parts contain transactions which abort and subsequently restart. The black parts
indicate sections of the application with no transactional activity.

At a first glance we can see visually that the amount of contention, the red parts, rises
beginning in the middle of the application runtime. The lower graph shows the ratio of
aborts and commits of the same Intruder run. As we can see the amount of contention
at the start of the application is low and later on rises steeply. This indicates a change
between phases during runtime.

By building a graph of the abort/commit ratio, like in Figure 6.12, it can be easily seen that
there are two large program phases. The application starts with a low contention phase and
the ratios stabilize at about a third into runtime. The ratio rises again after about half of the
runtime indicating the begin of the high contention phase.

The insight gained by analyzing the program phases visually can now be used to improve
the application performance when running on the adaptive implementation of the TMbox
Hybrid Transactional Memory system.
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(a)

(b)

(c)

Figure 6.11.: Intruder: Visualization of transactional behavior (a),
level of commits (b) and level of aborts (c)
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Improving performance through the use of adaptivity

The following experiment run on the XUPv5 shows how different switching policies affect
the performance of the Intruder application. They also show that the performance of
a Transactional Memory application with program phases is increased by choosing an
adaptive strategy. The adaptive strategy exploits program phases by matching a set of
Transactional Memory strategies to each phase and switching between them dynamically
during runtime. The adaptive strategy uses the adaptive process and the hardware units
from the framework as proposed in this diploma thesis.

In this experiment a thresholding algorithm is used as a phase detection algorithm. It
detects two types of program phases: A low and a high contention phase. This is done
by reading the summarized Transactional Memory activity from the statistics hardware
unit and computing a ratio between transaction aborts and commits. The algorithm is
parametrized using one parameter, the threshold ratio. If the computed ratio is above the
threshold ratio (i.e. the detected phase has a ratio higher than the threshold) the phase
detection algorithm indicates a high contention phase to the switching algorithm and vice
versa for a low contention phase. The value of the threshold ratio is based on the insight
gained through the analysis of the visualization of the Intruder application.

Based on the phase type indication from the phase detection algorithm the switching
algorithm decides which set of Transactional Memory strategies is optimal for the current
application phase. Optimistic strategies are better in low contention phases and pessimistic
ones are better in high contention phases. The switching takes place during application
runtime.

Three different strategies for the switching algorithm are benchmarked and compared:

• Static strategy

The static strategy selects a Transactional Memory strategy at the very start of the
application and leaves it unchanged during runtime. This corresponds to the usual
procedure in which Transactional Memory applications are executed: The used
strategies are set to fixed values during compile time and can not be varied later on.
This means the switching algorithm has a "no operation" function and the adaptivity
features are not used.

• Adaptive strategy 1 (fixed switching point in time)

The adaptive strategy 1 uses a fixed switching point in time (after a third of the
application’s runtime has elapsed). The strategies are switched only once. The
switching point has been determined visually by analyzing Figure 6.12.
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• Adaptive strategy 2 (dynamic switching points)

This adaptive strategy uses write-back with encounter time locking as the optimal
set of strategies for a high contention phase and one of the other strategies for a low
contention phase. The used strategy may be switched multiple times during runtime
depending on the detected program phase when using this adaptive strategy. The
decision to use WB-ETL for the high contention phases is based on the results of
sections 6.1 and 6.2.

The results of running the Intruder program on a 4 core system on the XUPv5 board with
the three strategies for the switching algorithm are shown in Figure 6.13.
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Figure 6.13.: Intruder: Comparison of static and adaptive switching strategies

The blue bars show the results of the static policies. The yellow bars show the results of
the dynamic policy with a fixed switching point in time. The green bars show the results of
the adaptive strategy with dynamic switching points. The horizontal black line represents
the runtime of the best static strategy.

A result is that in each case the adaptive strategies are better than the best static strategy.
Using adaptivity here resulted in a relative improvement of up to 7 % when compared to
the best static policy. The improvement relative to the other static strategies is up to 28 %.
This shows the benefits of using an adaptive system when running Transactional Memory
applications with program phases.
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7.1. Conclusion

This diploma thesis contributes to the state-of-the-art in the field of Transactional Memory
by showing that some transactional memory applications exhibit program phases and how
these phases can be detected during runtime by using application tracing. It is also shown
that the performance of a Transactional Memory application with program phases can be
increased by using an adaptive process which dynamically selects appropriate Transactional
Memory strategies. The adaptive process exploits program phases by matching a set of
Transactional Memory strategies to each phase and switching between them dynamically
during runtime. The hardware units from the framework proposed in this diploma thesis
are used for this purpose. The experimental results originate from an implementation on
an FPGA-based Hybrid Transactional Memory system.

7.2. Outlook

This diploma thesis reviewed a Hybrid Transactional Memory system, where exactly one
application runs on the system at a given time. The application therefore always has
uncontested access to all hardware units. An interesting aspect for further research in
a currently rather unexplored area is how multiple Transactional Memory applications
running simultaneously on a Hybrid Transactional Memory system can compete with each
other on the usage of Hardware Transactional Memory units.

Another interesting topic is to look at the other Transactional Memory applications in
the STAMP benchmark suite and show if they also exhibit phased execution. If some
applications exhibit phases the next step would be to apply the adaptive process to them
too.

Different Transactional Memory strategies and parameters can be varied by utilizing
FPGA runtime reconfiguration capabilities. This allows to change the hardware constraints
dynamically during application runtime. To keep this project in the scope of a diploma
thesis a decision has been made to reduce the explorable design space by keeping Hardware
Transactional Memory policy and parameters fixed. Based on the results of this project a
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future follow-up project could work on determining the feasibility and impact of dynamic
Hardware Transactional Memory reconfiguration.
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Glossary

BEE3 (Berkeley Emulation Engine, version 3) Multi-FPGA system designed to be used
to develop and evaluate new computer architectures

BRAM (Block RAM) Dedicated FPGA on-chip memory storage unit

HTM (Hardware Transactional Memory) Special ISA instructions allow to run some
parts of a Transactional Memory runtime system directly in hardware; constraint-
bound (e.g. capacity constraints: hardware can handle a specific read-/write-set
size, larger transactions fail)

HybridTM (Hybrid Transactional Memory) Transactional Memory runtime combining
Hardware Transactional Memory and Software Transactional Memory support;
transactions run in Hardware Transactional Memory mode and fall back to Software
Transactional Memory mode when encountering Hardware Transactional Memory
constraints

STM (Software Transactional Memory) Transactional Memory runtime using standard
ISA instructions; no modification of hardware necessary; usually slower than
Hardware Transactional Memory but with more permissive contraints

TM (Transactional Memory) Programming paradigm, which allows applications to run
atomic blocks using shared data concurrently; uses optimistic conflict checking to
ensure atomicity and consistency

XUPv5 (Xilinx University Program Development System) The XUPv5 FPGA board is a
general purpose evaluation and development platform with on-board memory and
industry standard connectivity interfaces. It features the Virtex-5 XC5VLX110T
FPGA.
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A.1. Control and data flow of common
Transactional Memory strategies

Figure A.1.: Write-back using commit-time locking (WB-CTL)
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Figure A.2.: Write-back using encounter-time locking (WB-ETL)

Figure A.3.: Write-through using encounter-time locking (WT)
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A.2. Sample run of an application

A sample run of the CoreMark benchmark application is shown in listing A.1. The boot
loader output is also shown.

1 Bootloader compiled on Jun 21 2013 18:52:07
2 Loader initializing ...
3 Calling main loader function ...
4 Erasing main memory ...
5 Reading header and data ...
6 ##############################################
7 ##############################################
8 ##############################################
9 ########################

10 header.size = 0x00004de8
11 header.crc = 0x884c24dd
12 Finished loading!
13 Computed CRC32 = 0x884c24dd
14 Returned from main loader function.
15 Successfull program load.
16 {0} f000 <-> 19000
17 {0} CPU 0 is present.
18 {0} start bench
19 {0} 2K performance run parameters for coremark.
20 {0} CoreMark Size : 666
21 {0} Total ticks : 1126816958
22 {0} Total time (secs): 22
23 {0} Iterations/Sec : 45
24 {0} Iterations : 1000
25 {0} Compiler version : GCC4.4.1
26 {0} Compiler flags : COMPILER_FLAGS
27 {0} Memory location : STACK
28 {0} seedcrc : 0xe9f5
29 {0} [0]crclist : 0xe714
30 {0} [0]crcmatrix : 0x1fd7
31 {0} [0]crcstate : 0x8e3a
32 {0} [0]crcfinal : 0xd340
33 {0} Correct operation validated. See readme.txt for run C

and reporting rules.
34 {0} Press ’r’ to reset...

Listing A.1: Boot loader and CoreMark transcript
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Lines numbered from 1 to 15 contain the output of the boot loader. Starting at line 16
control is transferred to the application program (CoreMark).

A.3. VHDL interface of bus controller unit

Figure A.4.: Interface of bus controller unit
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A.4. Memory regions of the adaptive Hybrid
Transactional Memory system
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Transactional Memory system. Note: The figure is not drawn to scale.
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A.5. Implementation: Number of lines of code

The files taken from the initial TMbox implementation for the BEE3 board are listed in
table A.2 and a short description is given for each file. These hardware units were only
slightly modified, generally to fix existing bugs. The units marked with a star indicate the
units, which were modified during implementation of the event-based tracing framework.

The units designed, implemented and tested during the scope of this diploma thesis are
listed in tables A.1 and A.3.

Lines of code File name Description

TMbox_support/ - Test units and Testbenches
58 bus_checker2.vhd

63 bus_checker.vhd

168 bus_controller_tb.vhd

51 bus_request_generator.vhd

113 ddr2_bram_tb.vhd

55 debounce_tb.vhd

88 mem_test_request_generator.vhd

64 tmbox_bram_tb.vhd

37 uart_tb.vhd

131 uart_top.vhd

828 Lines of code in directory

Table A.1.: Lines of code: TMbox_support - Test units
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Lines of code File name Description

TMbox/
68 alu.vhd Arithmetic and Logic Unit

143 bus_mux_vm.vhd Register selection logic

261 cache.vhd CPU data and instruction cache

33 common_defines.vhd Common type definitions

81 common_functions.vhd Common function definitions

691 control_vm.vhd Instruction decode stage

506 cpu_vm.vhd CPU top level unit

1533 honeycomb0.vhd * Processor core unit 0

1422 honeycomb.vhd * Other processor core units

120 log_fifo_bram.vhd * log_fifo (using Block RAMs)

154 log_fifo.vhd * log_fifo (using distributed memory)

243 mem_ctrl_vm.vhd Memory write and fetch stage

761 mlite_pack_vm.vhd Common definitions for CPU core

210 mult.vhd Multiplication unit

113 pc_next_vm.vhd Program Counter Unit

150 pipeline_vm.vhd Processor pipeline control

327 reg_bank_vm.vhd Register bank

382 ringbus_node.vhd Ringbus node (connection between proces-
sor core and

ring bus)

65 shifter.vhd Shifter unit

271 tmu.vhd Hardware Transactional Memory Unit

7534 Lines of code in directory

Table A.2.: Lines of code: TMbox
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Lines of code File name Description

TMbox_support/
383 bus_controller.vhd Bus Controller

71 cdc_ddr2_to_sys.vhd Clock Domain Crossing

DDR2 controller to system clock domain

79 cdc_sys_to_ddr2.vhd Clock Domain Crossing

System to DDR2 controller clock domain

34 clock_divider.vhd Clock divider

32 clock_enable.vhd Clock enable

110 ddr2_bram_sim.vhd DDR2 controller backed by Block RAMs

Simulation mode

83 ddr2_bram_synth.vhd DDR2 controller backed by Block RAMs

Synthesis mode

85 ddr2_loader_bram_sim.vhd DDR2 controller backed by SO-DIMM

Simulation mode

232 ddr2_loader_bram.vhd DDR2 controller backed by SO-DIMM

Synthesis mode

48 debounce.vhd Debounce unit (used for reset signal input)

80 pll_clk_gen_bram.vhd Clock generation and control

(when using Block RAMs as main mem-
ory backing)

137 pll_clk_gen_ddr2.vhd Clock generation and control

(when using SO-DIMM as main memory
backing)

44 reset_generator.vhd Controls reset signal generation

184 ringbus.vhd Ringbus (connection between processor
cores and bus controller)

194 tmbox_bram.vhd Top Unit (BRAM mode)

275 tmbox_ddr2.vhd Top Unit (DDR2 mode)

59 tm_control.vhd TM control unit

191 uart.vhd Universal Asynchronous Receiver/Trans-
mitter

2321 Lines of code in directory

Table A.3.: Lines of code: TMbox_support
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