## Corporate Finance 1 - Formeln

## 20. Februar 2011

Inhaltsverzeichnis
1 Basics ..... 2
1.1 Various firm characterizing formula ..... 2
1.2 Income Statement ..... 3
1.3 Balance sheet after merger ..... 4
2 Free Cash Flows - EFCF / PFCF ..... 5
3 Discounted Cash Flow - DCF ..... 6
4 Weighted Average Cost of Capital - WACC ..... 6
4.1 Cost of Debt Capital $\left(k_{d}\right)$ ..... 6
4.2 Cost of Preferred Equity $\left(k_{p}\right)$ ..... 7
4.3 Cost of Common Equity $\left(k_{e}\right)$ ..... 7
5 Divisional WACC ..... 8
6 Enterprise Valuation ..... 8
6.1 DCF with Gordon Growth and Hybrid Approach ..... 8
6.2 Disadvantages of WACC ..... 9
6.3 Adjusted Present Value ..... 9
7 Multiples ..... 9
8 Comparables ..... 9
9 Real Options ..... 10
Don't Panic(Douglas Adams: The Hitchhiker's Guide to the Galaxy)

## 1 Basics

### 1.1 Various firm characterizing formula

$$
\begin{aligned}
\text { Owners' Equity } & =\text { Assets }- \text { Liabilities } \\
\text { Enterprise Value }(\mathrm{EV}) & =\text { Equity Value }+ \text { Net Debt }+ \text { Minorities } \\
\text { Net Debt } & =\text { Debt }-(\text { Cash }+ \text { Cash Equivalents }) \\
\text { Equity Value } & =\text { Market Capitalization } \\
& =\text { Number of shares outstanding } * \text { Price per share } \\
\text { Price-Earnings Ratio P/E } & =\frac{\text { Share Price }}{\text { Earnings per Share }}=\frac{\text { Equity Value }}{\text { Earnings }}
\end{aligned}
$$

Cash equivalents are so called marketable securities, e.g. certificates of deposit, money market funds, government bills, and commercial paper.
The market-to-book ratio (MTB) is the ratio of a firm's market capitalization to its book value of stockholders' equity.

$$
M T B=\frac{\text { Market Value of Equity }}{\text { Book Value of Equity }}
$$

The debt-equity ratio ( $D / E$ ) is the ratio of a firm's debt value to its equity value. It can be calculated using either book or market values for equity and debt.

$$
\begin{gathered}
D / E=\frac{\text { Total Debt }}{\text { Total Equity }} \\
\text { Payout Ratio }=\frac{\text { Dividends }}{\text { Net Income }} \\
\text { Retained Earnings }=\text { Net Income }- \text { Dividends }
\end{gathered}
$$

$$
\text { Return on Equity }(\mathrm{ROE})=\frac{\text { Net Income }}{\text { BookValue of Equity }}
$$

$$
\text { Earnings per Share }(E P S)=\frac{\text { Net Income }}{\text { Shares outstanding }}
$$

Standard EPS, Diluted EPS (Standard EPS mit allen Aktienoptionen)

- Operating activities
- Investing activities
- Financing activities

The margin reveals how much a company earns before interest and taxes from each dollar of sales.

$$
\text { Operating Margin }=\frac{\text { Operating Income }}{\text { Total Sales }}
$$

The margin shows the fraction of each dollar in revenues that is available to equity holders after the firm pays interest and taxes.

$$
\text { Net Profit Margin }=\frac{\text { Net Income }}{\text { Total Sales }}
$$

### 1.2 Income Statement

Example Income Statement
Total Sales

- Cost of sales
$=$ Gross profit
- Selling, general and administrative expenses
- Research and development
- Depreciation and amortization
$=$ Operating Income
- Other Income
$=$ Earnings before interest and taxes (EBIT)
- Interest expense
$=$ Pretax income
- Taxes
$=$ Net Income


### 1.3 Balance sheet after merger

| Example Balance Sheet after Merger |  |
| :--- | :--- |
|  | Current assets |
|  | Fixed assets |
|  | Goodwill $\quad$ Difference between total assets and total EV |
| $=$ | Total assets |
|  | Debt $\quad$ |
|  | Equity |
| $=$ | Total EV $\quad$ Purchase price |

Use market values for balance sheet. Total assets and total EV must be equal, difference will be accounted for in "Goodwill".

## 2 Free Cash Flows - EFCF / PFCF

Equity free cash flow (EFCF): Cash flow available for distribution to the firm's common shareholders.

$$
\begin{aligned}
\text { EFCF }_{\text {Unlevered Firm }} & =\operatorname{EBIT} *(1-\mathrm{T})+\mathrm{DA}-\mathrm{CAPEX}-\Delta \mathrm{NWC} \\
\text { EFCF }_{\text {Levered Firm }} & =(\operatorname{EBIT}-\mathrm{I})(1-\mathrm{T})+\mathrm{DA}-\mathrm{CAPEX}-\Delta \mathrm{NWC}-\mathrm{P}+\mathrm{NP} \\
& =\text { Net Income }+\mathrm{DA}-\mathrm{CAPEX}-\Delta \mathrm{NWC}-\mathrm{P}+\mathrm{NP}
\end{aligned}
$$

Project free cash flow (PFCF): Cash flows available for distribution to both the firm's creditors and equity holders.

$$
\mathrm{PFCF}=\mathrm{EBIT} *(1-\mathrm{T})+\mathrm{DA}-\mathrm{CAPEX}-\Delta \mathrm{NWC}
$$

- EBIT: Earnings before interest and taxes
- EBIT * (1-T): After-tax operating income or net operating profit after tax (NOPAT)
- EBIT - I: Earnings before Taxes (EBT)
- (EBIT - I) ${ }^{*}(\mathbf{1}-\mathbf{T}):$ Net income after taxes (EAT)
- I: Interest
- T: Tax rate
- DA: Depreciation and amortization expense
- $\triangle$ NWC: Change in net working capital
- CAPEX: Capital expenditures for property, plant, and equipment; Change of PPE
- P: Principal payments on the firm's outstanding debt
- NP: Net proceeds from the issuance of new debt

$$
\begin{aligned}
\text { NWC } & =\left[\binom{\text { Current }}{\text { Assets }}-\binom{\text { Cash and Marketable }}{\text { Securities }}\right] \\
& -\left[\binom{\text { Current }}{\text { Liabilities }}-\binom{\text { Current Portion of }}{\text { Interest-Bearing Debt/Notes }}\right]
\end{aligned}
$$

## 3 Discounted Cash Flow - DCF

$$
\text { Net Present Value }(\mathrm{NPV})=\sum_{t=0}^{T}\left[\mathrm{PV}\left(\text { Cash Inflows }_{t}\right)-\mathrm{PV}\left(\text { Cash Outflows }_{t}\right)\right]
$$

$$
\text { Investment Rate }(I R)=\frac{\text { Net Investment }}{\text { NOPAT }}
$$

Return on Invested Capital $($ ROIC $)=\frac{\text { NOPAT }}{\text { Invested Capital }}$

$$
\begin{array}{r}
\text { PV of Perpetuity }=\frac{\text { Cash Flow }}{\mathrm{r}} \\
\text { PV of Growing Perpetuity }
\end{array}=\frac{\text { Cash Flow }}{\mathrm{r}-\mathrm{g}}
$$

PV of Firm with constant growth $\mathrm{V}_{t}=\frac{\mathrm{FFCF}_{t+1}}{\mathrm{WACC}-\mathrm{g}}=\frac{\mathrm{FFCF}_{t} *(1+\mathrm{g})}{\mathrm{WACC}-\mathrm{g}}$
Net Investment: Change in invested capital from one period to the next

## 4 Weighted Average Cost of Capital - WACC <br> $$
\mathrm{WACC}=\mathrm{k}_{d} * \mathrm{w}_{d} *(1-\mathrm{T})+\mathrm{k}_{p} * \mathrm{w}_{p}+\mathrm{k}_{e} * \mathrm{w}_{e}
$$

It is the average of the estimated required rates of return for the firm's interestbearing debt $\left(\mathrm{k}_{d}\right)$, preferred stock $\left(\mathrm{k}_{p}\right)$, and common equity $\left(\mathrm{k}_{e}\right)$. The weights used for each source of funds are equal to the proportions in which funds are raised.

### 4.1 Cost of Debt Capital ( $k_{d}$ )

The best estimate of a firm's current cost of debt is the yield to maturity (YTM) on its publicly-traded bonds.

Promised YTM: No default risk
Expected YTM: Interest and principal payments are subject to default risk If credit rating is in the investment grade range (better than BB ) use promised YTM, else use expected YTM. If firm has no publicly traded debt (no bonds outstanding) estimate the cost of debt by adding a rating-oriented credit risk spread to the yield of an (risk-free) government bond.

### 4.2 Cost of Preferred Equity ( $k_{p}$ )

$$
\mathrm{k}_{p}=\frac{\text { Preferred Dividend }}{\text { Preferred Stock Price }}
$$

If not considered separately, preferred stock is typically included in debt.

### 4.3 Cost of Common Equity ( $k_{e}$ )

$$
\begin{aligned}
& \mathrm{k}_{e}=\mathrm{r}_{f}+\beta_{e} *\left(\mathrm{R}_{\text {Market }}-\mathrm{r}_{f}\right) \\
& \beta_{u}=\frac{\beta_{e}}{1+(1-\mathrm{T}) * \frac{D}{E}} \\
& \beta_{e}=\beta_{u} *\left(1+(1-\mathrm{T}) * \frac{D}{E}\right)-\beta_{\text {debt }} *(1-T) * \frac{D}{E}
\end{aligned}
$$

- $\mathbf{r}_{\mathbf{f}}$ : Risk free rate of interest
- $\boldsymbol{\beta}_{\mathrm{e}}$ : Beta of company, or systematic risk of company common equity
- $\mathbf{R}_{\text {Market }}$ : Expected return on the market portfolio (all risky assets)
- ( $\left.\mathbf{R}_{\text {Market }}-\mathbf{r}_{\mathbf{f}}\right)$ : Expected equity risk premium

If $\beta_{\text {debt }}$ is not given, calculate with CAPM:

$$
\mathrm{k}_{d}=\mathrm{r}_{f}+\beta_{d} *\left(\mathrm{R}_{\text {Market }}-\mathrm{r}_{f}\right)
$$

Unsystematic risk can be eliminated through portfolio diversification. If applicable add company size premium to cost of equity.

$$
\begin{aligned}
\text { Standard deviation } \sigma_{x} & =\sqrt{\operatorname{Var}(\mathrm{x})} \\
\beta_{\text {Firm }} & =\frac{\operatorname{Cov}(\text { Firm, Index })}{\operatorname{Var}(\text { Index })}
\end{aligned}
$$

## 5 Divisional WACC

Comparison Divisional WACC - Single companywide WACC:
Divisional WACC lower than companywide WACC tends to under-invest in division, higher than companywide WACC tends to over-invest.

Project Debt capacity: Amount of additional debt the firm can take on when pursuing a project, without lowering the firm's credit rating.

Determinants of debt capacity:

- Volatility of cash flows
- Contribution to firm diversification
- Grade of flexibility of conversion assets $<->$ cash


## 6 Enterprise Valuation

### 6.1 DCF with Gordon Growth and Hybrid Approach

$$
\begin{aligned}
\text { Enterprise Value } & =\mathrm{PV}(\mathrm{CF} \text { during } \mathrm{PP})+\mathrm{PV}\left(\mathrm{TV}_{t}\right) \\
\mathrm{PV}(\mathrm{CF} \text { during } \mathrm{PP}) & =\sum_{t=1}^{P P} \frac{\mathrm{FFCF}_{t}}{\left(1+\mathrm{WACC}^{t}\right.}
\end{aligned}
$$

$\mathrm{TV}_{t}=\frac{\mathrm{FFCF}_{t} *(1+g)}{\left(\mathrm{WACC}^{-g}\right)}$
$\mathrm{TV}_{t}=\mathrm{EBITDA}_{t} *$ EBITDA Multiple Relative Valuation

### 6.2 Disadvantages of WACC

Implicit assumptions:

- Risks of cash flows do not change over time
- Company maintains steady capital structure


### 6.3 Adjusted Present Value

$$
\mathrm{EV}_{\mathrm{APV}}=\text { Unlevered EFCF }+ \text { Interest Tax Savings }
$$

$$
=\sum_{t=1}^{P P} \frac{\text { Unlevered EFCF }_{t}}{\left(1+k_{u}\right)^{t}}+\sum_{t=1}^{P P} \frac{\mathrm{I} * T}{\left(1+k_{d}\right)^{t}}+\mathrm{PV}(\text { Terminal Value })
$$

- Use $k_{d}$ (firms borrowing rate) as discount factor for Interest Tax Savings
- Use $k_{u}$ as discount factor for $\mathrm{PV}(\mathrm{TV})$, but calculate TV itself with WACC (when using Gordon Growth Model)
- $\boldsymbol{k}_{\boldsymbol{u}}$ : Cost of equity of unlevered firm

Decompose total enterprise value into value from unlevered EFCF and value from financing.

## 7 Multiples

$$
\begin{aligned}
\text { Sales multiple } & =\frac{\text { Enterprise Value }}{\text { Sales }} \\
\text { EBITDA multiple } & =\frac{\text { Enterprise Value }}{\text { EBITDA }}
\end{aligned}
$$

## 8 Comparables

$$
\begin{gathered}
\frac{E V_{\text {peer }}}{\text { EBITDA }_{\text {peer }}}=\frac{E V_{\text {target }}}{\text { EBITDA }_{\text {target }}} \\
\text { Price } / \text { Share }_{\text {peer }} \\
\text { Earnings } / \text { Share }_{\text {peer }}
\end{gathered}=\frac{\text { Price }^{2} \text { Share }_{\text {target }}}{\text { Earnings / } \text { Share }_{\text {target }}}
$$

## 9 Real Options

Volatility $\sigma$, Timestep t

$$
\begin{aligned}
\text { Risk neutral probability } \mathrm{q} & =\frac{e^{r t}-d}{u-d} \\
\text { Upstep } \mathrm{u} & =e^{\sigma \sqrt{t}} \\
\text { Downstep } \mathrm{d} & =\frac{1}{u}
\end{aligned}
$$

